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R�esum�e

Le bruit de fond sismiqueest une technique de plus en plus utilis�ee en g�enie parasismique

pour estimer le pro�l de vitesse des ondesde cisaillement pour un site donn�e. Admettant

l'hypoth�esequ'elles sont majoritairement compos�eesd'ondes de surface, les vibrations am-

biantes enregistr�eespar un r�eseaude capteurspeuvent être utilis�eespour d�eterminer la courbe

de dispersion. En g�en�eral, cela fournit une courbe sur une large gammede fr�equenceset cela

comporte l'avantage de ne pasn�ecessiterl'usagede sourcearti�cielle. A causede l'incertitude

sur lesdonn�eeset desnon-lin�earit�esdu probl�eme,la solution de l'inversiondescourbesde dis-

persionn'est pas unique. Les m�ethodesde recherche directe commel'algorithme de voisinage

permettent l'investigation de tout l'espacedes param�etres et l'in troduction d'informations a

priori de mani�ererationnelle. Suite au nombre limit �e de param�etrespour l'inversiondesondes

de surface,elles constituent une alternative int�eressante aux m�ethodes lin�earis�ees. Au cours

de cette th�ese,des outils e�caces bas�es sur l'algorithme de voisinagesont d�evelopp�es pour

obtenir les pro�ls uni-dimensionelde Vs �a partir d'enregistrements avec dessourcesactivesou

passives. Comme le nombre de mod�elesg�en�er�es est habituellement grand avec cesm�ethodes

stochastiques,une attention particuli �ere a �et�e attach�ee �a l'optimisation et �a la qualit�e de la

r�esolution du probl�emedirect.

Le code d�evelopp�e a �et�e test�e sur plusieurs mod�eles synth�etiques, dont un est pr�esent�e

ici. Les e�ets de la gamme de fr�equencedisponible et l'in
uence de l'information a priori

sont particuli �erement mis en �evidence.Les modessup�erieurspeuvent apporter descontraintes

suppl�ementaires lors de l'inversion mais ils posent �egalement de nombreux probl�emesquant �a

leur identi�cation correcte,pour laquelleun algorithme est propos�e. Nous montrons aussique

l'inversion desmodesde Love et de Rayleigh est une technique prometteusepour augmenter

la profondeurde p�en�etration de la m�ethode. De plus, nousavonsd�evelopp�e un outil sp�eci�que

pour l'inversiondescourbesd'auto-corr�elation qui prend en compte les incertitudes observ�ees

sur lescourbesexp�erimentales et lespropageaux pro�ls de vitesseinvers�es.

L'in terpr�etation compl�ete depuis l'acquisition jusqu'�a obtention des pro�ls de vitesseest

illustr �ee par deux exemplesavec un champ d'onde synth�etique et r�eel (Li �ege,Belgique). Les

informations d�eduites de forages,de tests de r�efraction classiques,d'enregistrments avec des

sourcesactives, et de la fr�equencedu pic H/V sont analys�eespour valider les r�esultats des

r�eseaux.
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Abstract

Microtremors are increasinglyusedin earthquake engineeringto infer the shear-wave velocity

pro�le at a given site. Assuming they are mainly composedof surfacewaves, ambient vibra-

tions recordedby an array of sensorscan be usedto determinethe dispersioncurve. Generally,

it provides a large frequencyband dispersion curve and it has the advantage of not requiring

arti�cial sources,making it particular suitable for urban applications. Due to the data uncer-

tainties and the non-linearity of the problem, the solution of the dispersion curve inversion is

not unique. Direct search methods like the neighbourhood algorithm allow the investigation of

the whole parameter spaceand the introduction of prior information in a rational way. Due

to the limited number of parametersin surface-wave inversion, they constitute an attractiv e

alternative to linearizedmethods. During this thesis,e�cien t toolsbasedon the neighbourhood

algorithm are developed to obtain the one-dimensionalVs pro�le from passive or active source

experiments. As the number of generatedmodels is usually high with stochastic techniques,

special attention is paid to the optimization and to the reliabilit y of the forward computations.

The developed code has beentested on several synthetic models, among them one is pre-

sented here. The e�ects of the available frequencyrange and the in
uence of the prior infor-

mation are particularly emphasized.Higher modesmight bring additional constraints during

the inversion but they also raise the crucial problem of their correct identi�cation, for which

an algorithm is proposed. We also show that the inversion of Love and Rayleigh modes is a

promising technique to increasethe penetration depth of the method. Moreover, we developed

a speci�c tool for the inversion of auto-correlation curveswhich takes into account the uncer-

tainties observed on experimental curvesand propagatesit to the inverted velocity pro�les.

The whole interpretation chain from �eld acquisitionsto the achievement of velocity pro�les

is illustrated by two exampleswith synthetic and real wave�elds (Li �ege,Belgium). Information

from boreholes,classicalrefraction tests, active surfacewave experiments, and from the H/V

peak frequencyare analysedto check the validit y of the array results.
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In tro duction

During the last twenty years, several major earthquakes (Mexico 1985, Loma Prieta 1989,

Kobe 1995,Izmit 1999,El Salvador 2001,Bam 2003,. . . ) were directly responsibleof tens of

thousandsof personskilled and injured. The damageto human infrastructures and the distur-

bancesof the local life represent an inestimablecost for national and local authorities, usually

requiring international cooperation. Most of the cities and high populated areasare located

on soft sediments (valleys,estuaries,recent deposits, . . . ) the soil structure of which are prone

to amplify seismicwaves (Murphy and Shah 1988,Bard 1994). This phenomenonis usually

called site e�ect or site ampli�cation sincethe amplitude of the motion highly dependsupon

the local properties of the soil. Consequently, the risk mitigation requires�ne investigationsof

each geologicalsetting. The investments necessarywith conventional techniques,i.e. boreholes,

are prohibitiv e for developing countries and for regionswith a moderate seismicactivit y (e.g.

Western Europe). In this context, the European project SESAME (Site E�ectS assessment

using AMbient Excitation, Project EVG1-CT-2000-00026)was initiated in 2001to study the

reliabilit y of low cost methods basedon the measurement of ambient vibrations1. The focus

wasput on two methods: the so-calledH/V (Horizontal to vertical ratio) which becamewidely

usedafter the work of Nakamura (1989), and the more complexarray measurements basedon

the simultaneousrecordingsof the ambient vibrations at various locations. This thesis,which

hasbeenpartly �nanced by the SESAME project, focuseson the array methods, which aim at

inferring the one-dimensionalshear-wave velocity pro�le at a given site.

Seismicwave propagationin a geologicalstructure dependson its characteristics: the geom-

etry of the layers, the shearand compressional-wave velocities, the density, and the attenuation

factor inside each of them. For one-dimensionalgeologicalenvironments (property variations

limited to the vertical axis), it can be theoretically shown that the shear-wave velocity (Vs)

has the greatest in
uence. Conventional methods to accessthis parameterusually require the

drilling of invasive and expensive boreholeswhich might be very disturbant for the inhabitants

of densecities. The determination of Vs in the layers closeto the surface(down to few tens of

metres) is now possiblewithout destructive methods thanks to the development of the surface

wave methodsduring the last �fteen years,i.e spectral analysisof surfacewaves(SASW, Stokoe

et al. 1989,Tokimatsu 1995,Foti et al. 2003,Soccoand Strobbia 2004). Surfacewavestravel

1Also called ambient noise, microtremor, . . . However, the word "noise" is ambiguous becauseit generally
designatesall apparently random variations not explained by the current scienti�c model. For ambient vibra-
tion methods the noise is separated in coherent and incoherent noise. The �rst category contains valuable
information.

1
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along the ground surface(at the soil-air interface). In vertically heterogeneousmedia, surface

waves are dispersive: their velocity varies as a function of frequency, which in turn controls

their penetration depth (Aki and Richards 2002). This dispersion property can be used to

derive Vs versusdepth through an inversionprocess(Herrmann 1994,Wathelet et al. 2004).

Though attractiv e on many aspects, the surfacewave methods using arti�cial sourcesgen-

erally o�er a restricted investigation depth (a few tens of metres usually) due to the limited

frequencyrangeof the signals(Jongmansand Demanet 1993,Tokimatsu 1995). Moreover, in

various geologicalenvironment with thick soft sediments (e.g. 500 m for Grenoblein France),

the site e�ects depend alsoupon the properties of the deepstructure. The improvement of the

penetration is possiblethrough the useof higher energysourcesrich of low frequency. In an

urban context, the useof explosive loads or mechanical generatorsis limited to avoid distur-

banceto the neighbouring housesand buildings. For regionswith high seismicity and a dense

observation network, the experienceof past events is intensively usedfor inferring the site dy-

namic response.However, for regionswith a moderateseismicity, the observation networks are

lessdenseand there are fewer signi�cant events. Consequently, it is necessaryto develop other

techniquesto calculate the site transfer function, for which Vs is a key parameter.

On the other hand, the frequencycontent of microtremor record is distributed over a wider

range and the measurement of ambient vibrations through an array of sensorshas appeared

as a promising option to complement active sources(Asten and Henstridge 1984,Tokimatsu

1995,Satoh et al. 2001,Bettig et al. 2001,Nguyen et al. 2004,Wathelet et al. 2004). Noise

energydependsupon the sourcelocationsand upon the impedancecontrast betweenthe rocky

basement and the overlying soft sediments (Chouet et al. 1998,Milana et al. 1996). The main

hypothesisfor usingambient vibrations is that they aredominantly composedof surfacewaves,

which allows the dispersionproperty to be used(Tokimatsu 1995,Chouet et al. 1998).

The properties of the sourcesthat generatethe measuredground excitation are generally

unknown. Consequently, the interpretation is generallya two-stepprocess.First, the velocity of

the travelling wavesat a given frequencyis derived from the processingof simultaneousground-

motion recordingsat various stations. The commonapproachesusedto derive the dispersion

curve from the raw signals can be classi�ed into two main families: frequency-wavenumber

methods (Capon 1969,Lacosset al. 1969,Kvaernaand Ringdahl 1986,Ohrnberger2001)and

spatial auto-correlation methods (Aki 1957, Roberts and Asten 2004). At the secondstage,

the dispersioncurve is inverted to obtain the Vs (and eventually the Vp) vertical pro�le, as in

the classicalactive-sourcemethods (Stokoe et al. 1989,Malagnini et al. 1995). Like all surface

wave methods, the obtained geometry is purely one-dimensionaland is averagedacrossthe

array, implying that the technique is not suitable when strong lateral variations are present.

Ob jectiv es

The objective of this work is the improvement of existing inversion techniquesin the context

of ambient vibration methods in order to obtain Vs(z). A special attention has beenpaid to
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the reliabilit y of the inverted pro�les and to the possibility of including information from other

typesof experiments in the inversionprocess.

The derivation of one-dimensionalshear-wave velocity pro�les from surfacewave dispersion

curvesis a classicalinversionproblem in geophysics,generallysolved using linearizedmethods

(Nolet 1981,Tarantola 1987). The inversionof dispersioncurvesis known to be strongly non-

linear and is a�ected by non-uniqueness,i.e. various models may explain the samedata set

with an equal mis�t. Linearized methods behave poorly in such contexts and a Monte Carlo

like approach has beenchosenhere. During this thesis, we have developed a new code using

the neighbourhood algorithm (Sambridge 1999a)for inverting dispersioncurves. The software

allows the inclusion of prior information on the di�erent parametersand a major e�ort has

beenmadeto optimize the computation time at the di�erent stagesof inversion. In particular,

we have re-implemented the dispersion curve computation in C++ languageusing Dunkin's

formalism (1965). The code is tested on synthetic casesaswell ason real data sets,combining

ambient vibrations and active-sourcedata. In both cases,the role of a prior information for

constraining the solution is emphasized.Moreover, speci�c methods are proposedto invert the

auto-correlation curvesto obtain directly the ground structure, to identify and to invert higher

modes,and to include frequencyinformation measuredwith the H/V technique.

Aside, a software packagehas beendeveloped for preparing array campaigns,storing, vi-

sualizing and analysing the recordedsignals(open sourceproject, GEOPSY). The techniques

for processingraw signalswere revisited and the corresponding algorithms were implemented

in this uni�ed platform dedicatedto seismicprospecting.

Thesis outline

This document is organizedin six chapters.

Chapter 1 recallsthe available methods for processingthe recordingsof ambient vibrations.

An extention to active-sourceexperiments is also detailed. The output of all thesetechniques

is the dispersioncurve of surfacewaves(or a parent curve).

Chapter 2 summarizesall the generaloptions that can be consideredto infer the soil prop-

erties from an observed dispersioncurve. The chosenalgorithm (neighbourhood algorithm) is

presented with more details. A personalimprovement of this technique is discussedat the end.

Chapter 3 presents the algorithm usedfor computing the dispersioncurvesfor one-dimen-

sional models. A number of improvements are proposedto speedup the calculations and to

ensurea correct answer. The sensitivity of the dispersion curve to input parametersis tested

as well.

Between the inversion algorithm and the forward computation, a crucial step is the pa-

rameterization of the ground model. The parameter value rangesare chosenand the prior

information is included at this stage. Chapter 4 explainsall the strategiesfor choosingparam-

eter basedon synthetic dispersioncurve examples.

Chapter 5 details various uncommoninversions,that include higher modes,Love and Ray-
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leigh modes,the frequencyinformation from H/V techniques,and the direct inversionof auto-

correlation curves.

Chapter 6, the array technique is testedon synthetic ambient vibrations with varioussignal

processingmethods. The parallel interpretation of arrays of distinct apertures is a key aspect

to obtain unbiaseddispersioncurves,and hencecorrect Vs pro�les. The processingtechniques

are applied to array vibration measurements in the city of Li�ege,Belgium and the results are

comparedto other prospecting methods (boreholes,seismicrefraction, ConePenetration Tests,

H/V).



Chapter 1

Measuring wave velocit y

During this thesis,we mainly focuson the inversionof the dispersioncurves. This �rst chapter

presents the experimental techniques that are commonly used to measurethem. After the

development of the inversion tool in chapters 2 to 5, chapter 6 describesthe whole interpreta-

tion chain from the experimental measurements of the dispersioncurves (by the meansof the

methods described in this chapter) to the inversion of the velocity pro�les of test sites. The

discussionof chapter 6 is basedon a synthetic and a real case.

Surfacewave methods are divided in two main categoriesbasedon the kind of sources

that generatethe observed signals, i.e. active and passive methods. The �rst ones record

vibrations generatedby an arti�cial sourcethe frequency band of which is generally above

2 Hz (Tokimatsu 1995). Their penetration depths are usually limited to a few tens of metres

(Jongmansand Demanet 1993,Tokimatsu 1995,Socco and Strobbia 2004). On the contrary,

ambient vibrations or microtremors are producedwith sourcesof much larger spectra, making

both methods complementary for investigating deepgeologicalstructures (Nguyen et al. 2004,

Wathelet et al. 2004).

The determination of the dispersion characteristics (dispersion or auto-correlation curves)

from passive recordings is �rst reviewed. Frequency wavenumber (f-k, Lacosset al. 1969,

Kvaernaand Ringdahl 1986),high resolutionfrequencywavenumber (Capon 1969,Horike1985)

and spatial auto-correlationmethods (Aki 1957,Roberts and Asten 2004)are the most popular

ones.The processingtechnique usedin this thesis for active experiment is a particular caseof

the general frequencywavenumber method. Additionally , the sensorlayout deployed for the

active surfacewave method is the sameasfor refraction surveysand allows the measurement of

Vp and Vs pro�les on the �rst tensof metres,which brings valuableinformation for the inversion

of the dispersioncurve (chapter 3).

1.1 Am bien t vibrations

The main objective when processingambient vibration recordingsis to measurethe velocity

of surfacewaveswhich varieswith frequency. The �rst assumptionis hencethat the wave�eld

mainly consistsof surface waves. For a horizontally strati�ed soil structure, the measured

5
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velocities might be the body wave velocities (Vp and Vs) or the dispersioncurve of surfacewaves

including the fundamental and the higher modes(Aki and Richards 2002). If the direction of

propagationis known and if onesinglewavedominates,the velocity canbecalculatedby picking

the arrival time at two sensorsseparatedby a �xed distance. However, the ambient wave�eld

is made of the superposition of many waves travelling in any direction. Picking is no longer

possiblebecausethe individual propagating waves cannot be identi�ed, and more sensorsare

necessaryto scanall potential azimuths. Signal processingtechniquesare essential to retrieve

the apparent velocities. We restrict our work to the vertical component of the wave�eld which

doesnot contain Love contributions.

Theoretically, better velocity measurements are achieved when numeroussensorsare avail-

able to samplethe wave�eld at the ground surface. Ideally, the number of stations should be

greaterthan the number of wavespresent at onetime (Asten and Henstridge1984). Practically,

the ambient wave�eld is recordedby a limited number of sensorsfor cost and logistical reasons

(ten to a few tens of elements per array, Chouet et al. 1997,Saccorotti et al. 2003,Scherbaum

et al. 2003). The three components are generallyrecordedsimultaneouslyat each station. The

optimum of the array geometry is still a matter of debates. However, the array output must

be identical for all incident azimuths becausethere is generallyno prior knowledgeabout the

characteristicsof the ambient wave�eld (Asten and Henstridge1984). Hence,a roughly circular

shape is probably the best option. All sensorsmust not necessarilylay on the samecircle, but

there must be a certain kind of rotational symmetry in the sensorpositions. In section 1.1.1

on page7, a quantitativ e method is proposedto analysethe e�ciency of arrays.

Once the signals are recorded for a su�cien t duration (at least half an hour, or longer

for deepsoil structures that require low frequencyinformation), they are processedwith the

three techniquesdescribed hereafter,which extract the samevelocity information from the raw

signalsin three di�erent ways. Agreement betweenthe three methods is usually expected for

good quality results. Testsof the three processingmethods on a synthetic and a real caseare

given in chapter 6. Other methods, like multiple signal classi�cation (MUSIC, Schmidt 1981,

Cornou et al. 2003)are not consideredhere.

1.1.1 Frequency-w avenum ber metho d

Principles

The horizontal velocity is calculated for various frequency bands. The raw signals are �rst

divided in short time windows the length of which may depend upon the consideredfrequency

band. The optimum window length is discussedin sections6.1.2 and 6.1.3 from synthetic

signal analysis. Eventually, a pre-processingmethod may be usedto reject certain parts of the

measuredsignals(transient or saturated signals,Bard 1998). A Fourier transform is calculated

for the signal of each sensorafter a proper cutting of the current time window (a 10% cosine

taper is applied). The frequency-wavenumber transformation itself is calculatedin the frequency

domain on the cut signals.
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Frequency-wavenumber (f-k, Lacosset al. 1969,Kvaerna and Ringdahl 1986) analysisas-

sumeshorizontal plane waves to travel acrossthe array of sensorslaid out at the surface.

Consideringa wave with frequencyf , a direction of propagationand a velocity (or equivalently

kx and ky, wavenumbers along X and Y horizontal axis, respectively) the relative arrival times

are calculated at all sensorlocations and the phasesare shifted accordingto the time delays.

The array output is calculated by the summation of shifted signalsin the frequencydomain.

If the wavese�ectively travel with the given direction and velocity, all contributions will stack

constructively, resulting in a high array output. The array output divided by the spectral power

is called the semblance (Lacosset al. 1969,Asten and Henstridge1984). The location of the

maximum of semblance in the plane (kx , ky) provides an estimate of the velocity and of the

azimuth of the travelling wavesacrossthe array.

The velocity corresponding to the maximum of semblanceis searched betweenlimits which

depend upon each particular software implementation. This part is detailed on page11. For

each time window, a velocity value is calculated,and an histogram is generallyconstructedfor

each frequencyband. Examplesof such results are found in chapter 6.

In the caseof waves travelling simultaneously in various directions (usual situation for

ambient vibrations), the assumption of uncorrelated signalsmay not be satis�ed, leading to

incorrect velocity estimates(Goldstein and Archuleta 1987). With a limited number of sensors,

stacking during a long enoughperiod of time (a few tensof minutes) is then necessaryto obtain

correct velocity values. This issuewill alsobe detailed in chapter 6.

Theoretical arra y response

The theoretical frequency-wavenumber responseof an array is a semblance map that would

have been obtained for a single vertically incident plane wave ((k(1)
x ; k(1)

y ) equal to (0; 0) in

equation 1.2). It is also called the array transfer function becausethe array output is the

convolution of the wave�eld and of the theoretical frequency-wavenumber response. The nor-

malized theoretical array responsein the (kx , ky) plane is given by

Rth (kx ; ky) =
1
n2

�
�
�
�
�

nX

i =1

e� j (kx x i + ky yi )

�
�
�
�
�

2

(1.1)

wheren is the number of sensorsin the array, and (x i ; yi ) are their coordinates. For onesingle

plane wave Si (f ) = A(f )ej (x i k
(1)
x + yi k

(1)
y � 2� f t+ � ) crossingthe array at wavenumber (k(1)

x ; k(1)
y ) an

at frequencyf , recordedat sensori , at time t and with a phase� , the array output is

R(kx ; ky; f ) =

�
�
�
�
�

nX

i =1

Si (f )e� j (kx x i + ky yi )

�
�
�
�
�

2

= n2A2(f )Rth (kx � k(1)
x ; ky � k(1)

y ) (1.2)

whereA(f ) is the amplitude spectrum. The array output is equal to the theoretical response

translated by vector (k(1)
x ; k(1)

y ) and multiplied by the squareof the amplitude. For multiple
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plane wavestravelling acrossthe array, S(1) to S(m) , the array output is

R(kx ; ky; f ) =

�
�
�
�
�

nX

i =1

 
mX

l=1

S(l )
i (f )

!

e� j (kx x i + ky yi )

�
�
�
�
�

2

� n2
mX

l=1

R(l )(kx ; ky; f ) (1.3)

whereR(l ) are the array outputs for singleplane wavesde�ned by equation (1.2), and S(l )
i the

wave l recordedat station i . In this case,the array output is always lower than the sum of

translated theoretical responses,the maximum being reached when all wavesare in phase.
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Figure 1.1: Theoretical array responsesfor 25 sensors.Array geometries: (a) circle, (d) Cartesian grid, and
(g) spiral. (b), (e), and (h) Theoretical array responsesin the plane (kx ; ky ). (c), (f ), and (i) Sectionsacross
theoretical array responsesfor various propagation azimuths (628 valuesbetween0 and 2� ).

From equation (1.1), Rth always exhibits a central peak the value of which is one (kx and

ky = 0) and lateral aliasing peaksthe amplitude of which is lessthan one. Beyond a certain

limit which is called the theoretical aliasing wavenumber, this pattern is repeated due to the

periodic nature of ej x . Below this theoretical limit, equation (1.2) shows that the position

of the highest peak of the array output is directly linked to the apparent velocity and the
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azimuth of the propagating wave. For a complex wave�eld described by equation (1.3), and

assumingthat all contributing wavesare in phaseto get equality, aliasing is likely to occur for

lower wavenumbers due to the summation of the lateral peaksof Rth . Hence,Rth is of prime

importance to de�ne the potential aliasing limits (kmax ) of the chosenarray geometry. On the

other hand, it is obvious that the thinner the central peak is, the more capableis the array to

distinguish two wavestravelling at closewavenumbers. The resolution limit (kmin ) is controlled

by the width of the central peak. For simple array geometries,for instance a cartesiangrid,

kmin and kmax are linked to the minimum and maximum distancebetweensensors.For usual

irregular array geometries,Rth is necessaryfor the de�nition of objective wavenumber limits.

We de�ne practical rules for the aliasingand resolution limits from Rth , setting kmax at the

�rst peak exceeding0.5 (or -3 dB) and kmin being measuredat the mid-height of the central

peak (Woods and Lintz 1973,Asten and Henstridge1984,Ga�et 1998). If the aliasing peaks

are lessthan the central peak,and if a singlesourceis acting, kmax doesnot e�ectively limit the

power of the array. However for multiple sources,even if the aliasing peaksare lessthan the

central peak, the superposition may createartefacts leading to the confusionof aliasing peaks

with the main one. If the aliasing peaksare of the sameorder of magnitude as the main peak,

the wavenumber limit is always kmax =2. In a safeapproach, it is better to limit the valid array

output to kmax =2 in all cases.Theserules are comparedto frequency-wavenumber output in

chapter 6.

Array geometry Number of sensors kmin kmax

Perfect circle 25 0.024 1.00
Cartesiangrid 25 0.022 0.25

Spiral 25 0.036 2.75
Perfect circle 10 0.024 0.40

Three triangles 10 0.038 0.36
Irregular circle 10 0.026 0.15

Table 1.1: Properties of the array geometries. For each array, the minimum and maximum wavenumbers
(rad/m) deducedfrom the theoretical frequency-wavenumber responsesin �gures 1.1 and 1.2.

The theoretical array responseis calculated for various array geometriescontaining 25 and

10sensorsin �gures 1.1and 1.2, respectively: a perfectcircle (�gures 1.1(a) to 1.1(c), and 1.2(a)

to 1.2(c)), a Cartesian grid (�gures 1.1(d) to 1.1(f)), a perfect spiral (�gures 1.1(g) to 1.1(i)),

an ensemble of three triangles rotated by 40� (�gures 1.2(d) to 1.2(f)), and an irregular circle

(�gures 1.2(g) to 1.2(i)). The aperture1 is always around100m. The grey curve of plots (c), (f )

and (i) aresectionsacrossthe theoretical array responsefor variouspropagatingazimuths. The

kmin and the kmax are estimated in table 1.1. The width of the central peak at its mid height

presents small variations versusthe geometries.For instance,the perfect circle in �gure 1.1(a)

hasan aperture of exactly 100m and a kmin around 0.024rad/s. On the other hand, the spiral

array in �gure 1.1(g) has an aperture of 98.5 m and a kmin around 0.036rad/s. Hence,kmin

cannot be deducedfrom the aperture by a simple linear relationship. On another hand, kmax is

1Maximum distance betweenany pair of sensors
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strongly dependent upon the number of sensorsand their geometries.When multiple wavesare

travelling acrossthe array at the sametime, the performancesof an array dependalsoupon the

"ground" level of its theoretical array response. For example,the rectangular array is almost


at between 0.05 and 0.2 comparedto the circular array, which meansthat two semblance

peaksseparatedby kmin are not a�ected by each other in the summation of equation (1.3).

The arrays of �gure 1.2 with 10 sensorsare more commonthan arrays with 25 sensors,but

their available wavenumber rangebetweenkmin and kmax is usually not large enoughto obtain

a completedispersion curve. Hence,various array apertures and geometrieswith overlapping

wavenumber rangesmust be planned beforeany experiment. It can be basedon a �rst guess

of the dispersion curve calculated with common properties for the expected geology. The

wavenumber rangesmust cover the whole dispersion curve down to the expected resonance

frequency. This limit only applies to arrays for which the vertical components are processed.

Extention towards lower frequenciesmight be necessaryif horizontal components are planned

to be processed(chapter 6).

Implemen tation

The f-k algorithm has been implemented in C++ as a plug-in module of the seismicsignal

databaseGEOPSY2. The Fourier transform is calculated with the FFTW package(Frigo and

Steven 2005, www.�t w.org) which allows any arbitrary number of samples,not restricted to

powers of two.

In this work and for the f-k method, we considerthe semblance as the ratio of the array

output over the spectral power. The search of the maximum of semblance is performed with

a rough gridding of the plane (kx ; ky). The exact maximum is then re�ned within the eight

cells that surround the cell with the highest value. A secondarygrid is constructed with 16

cells inside the area delineated by the preceding9 cells (8+1). The cell with the maximum

semblanceand its 8 surroundingcellsdelineatean areathat it is 9/16 smaller than the original

area. The processis repeated until reaching a su�cien t precision. The search is performed

in the wavenumber domain contrary to other implementations (cap, Ohrnberger 2001) which

work in the slownessdomain. The advantage of the wavenumber domain is that the size of

the peaksare not varying with the frequency. E�ectiv ely, equations(1.2) and (1.3) show that

the array output is the sum of the translated theoretical array responsesof the most energetic

waves,which do not decreasethe sizeof the main peak. Consequently, in wavenumber domain,

the maximum of semblance can be searched for all frequencybands with the samegrid step.

To not miss the true semblancemaximum, the grid cell must be lessthan a half of kmin .

From the considerationsof the precedingsection,it is uselessto search for peaksabove kmax .

Moreover, the velocity of the semblance peak must be consistent with physical limits of the

Rayleigh or Love dispersioncurves(section 3.1.5on page40). Consequently when calculating

the array output for a pair (kx ; ky), if the velocity corresponding to the wavenumber (
p

k2
x + k2

y)

2Databasewith a graphical user interface (Qt libraries, www.trolltec h.com) dedicatedto seismicprospecting
and developed during this thesis. Its dynamic signal loader is able to work on very long recordings(hours) with
an e�cien t memory and time consumption. It works on any desktop PC (Lin ux or Windows) or Mac.
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and the current frequencyis not betweencommonlimits (e.g. [150; 3500]m/s), a zerovalue is

returned.

1.1.2 High resolution metho d

With the aim of improving the f-k method, Capon (1969)addedweighting factorsto each sensor

contribution in the computation of the array output. They are calculatedin order to minimize

the energy carried by wavenumbers di�ering from the consideredone. The high resolution

frequency-wavenumber technique is theoretically able to distinguish two waves travelling at

closewavenumbers in a better way than the f-k method.

Principles

If the ambient wave�eld is recordedwith n sensorslocatedat �!r i , let X (�!r i ; ! ) being the spectra

calculated for station i

X (�!r i ; ! ) =
qX

m=1

Sm (! )ej (
� !
km ��!r i ) + � (�!r i ; ! ) (1.4)

where! = 2� f is the angularfrequency, Sm (! ) is the complexspectrum and
�!
km is the wavenum-

ber vector of the planewave triggered by sourcem, and � is the uncorrelatedpart of the signal

("the noiseof the ambient vibrations"). The array output is

R(
�!
k ; ! ) =

nX

i =1

Wi (! )X (�!r i ; ! )e� j
�!
k ��!r i (1.5)

whereWi (! ) are arbitrary weighting functions. The f-k method presented in section1.1.1uses

constant weighting functions equal to 1. In this case,equations1.3 and 1.5 are equivalent.

Estimates of the wave velocity at frequency! (
�!
k (! )) are henceobtained by maximizing

the complexmodulus of R(
�!
k ; ! ) in the wavenumber plane. At the maximum,

�!
k equalsto

�!
km ,

the wavenumber of the dominant plane wave. Using matrix notations,

R = AW X (1.6)

where,

A =
h
e� j

�!
k ��!r 1 ; : : : ; e� j

�!
k ��!r n

i

W =

2

6
6
6
6
4

W1(! ) 0 : : : 0

0 : : :

: : : 0

0 : : : 0 Wn (! )

3

7
7
7
7
5

(1.7)

X = [X 1(! ); : : : ; X n(! )]
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The frequency-wavenumber cross-spectrum is hence

P = AW CW H AH (1.8)

whereC = E[X X H ] is the crossspectral matrix evaluatedusingfrequencyor spatial smoothing,

and H denoteshermitian conjugateoperator.

Capon (1969) introducedparticular weighting functions optimized by minimizing the signal

power of WCW H for all wavenumbers di�ering from the considered
�!
k , which leadsto

W =
C � 1A

AH C � 1A
(1.9)

Theoretically, this high-resolutionmethod allowshigher resolution. This assertionis checked

for a simulated and a real casein chapter 6.

Implemen tation

No particular code has beendeveloped for the high resolution method during this thesis. We

used the software cap(Ohrnberger 2001, Kind 2002, Ohrnberger et al. 2004a, Ohrnberger

2004b). cap can accessa GEOPSY databaseto obtain the input signals. It was available

within the SESAME European project (Site E�ectS assessment using AMbient Excitation,

Project EVG1-CT-2000-00026).

1.1.3 Spatial auto-correlation metho d

The spatial auto-correlation techniquestake advantageof the random distribution of sourcesin

time and spaceto link auto-correlation ratios to phasevelocities. In the caseof a single-valued

phasevelocity per frequencyband, Aki (1957) demonstratedthat theseratios have the shape

of Besselfunctions of order 0, the argument of which is dependent upon the dispersion curve

valuesand the array aperture. Bettig et al. (2001) brought someslight modi�cations to the

original formula to extend the method for irregular arrays. Those conceptsare brie
y recall

in the next section. An original inversion strategy has been developed for auto-correlation

ratios during this thesis (section 3.3). Examplesfor synthetic and real casesare discussedin

sections5.2, 6.1.5,and 6.2.5.

Principles

The spatial auto-correlation function betweentwo sensorsis de�ned by (Aki 1957)

� (� ) =
1
T

Z T

0
v0(t)v� (t)dt (1.10)

wherev0 andv� arethe signalsrecordedduring T secondsat two stationsseparatedby a distance

� . If the signalsare�ltered with a narrow frequencyband around ! 0, the auto-correlationratios
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de�ned by

� (� ; ! 0) =
� (� ; ! 0)
� (0; ! 0)

(1.11)

are calculated for all pairs of receivers. For a given inter-distance � , Aki (1957) demon-

strated that the azimuthal average of � (� ; ! 0) has the shape of Besselfunctions (same as

equation (3.47)).

� (� ; ! 0) = J0

�
! 0�

c(! 0)

�
(1.12)

where J0 is the Besselfunction of the �rst order and c(! 0) is the dispersion curve. Equation

(1.11) is computed in the time domain on �ltered signals(a taper in the frequencydomain is

usedto ensurea zerophase�lter). Another expressionis alsoavailable in the frequencydomain

which avoids one computation of the Fourier transform, but its results are not as preciseas

equation (1.11) (Metaxian 1994).

Like for the f-k method, the raw signalsare cut in smaller time windows (section 1.1.1) on

which the auto-correlation ratios are computed. Consequently, for each frequencyband, for

each range of inter-distance, and for each individual time windows, an azimuthally averaged

auto-correlation ratio is calculated. The resultsare generallypresented under the form of auto-

correlation curveswith error bars plotted against frequencyor inter-distance(e.g. �gure 6.14).

Implemen tation

The computation of auto-correlation ratio from recordedsignalshas been implemented as a

plug-in module in GEOPSY. The FFTW algorithm is usedfor all Fourier transforms.

1.2 Arti�cial sources

The caseof onesingleand instantaneouspoint sourceis consideredhere. The sensorsand the

sourcepoints are usually distributed along a line. Contrary to ambient vibrations, there is

a total control over the sourceparameters(location, type of source,frequencycontent, time

of occurrence,. . . ). On the recordedsignals, the body waves (P and/or S) and the surface

wavesare generallyvisible. The last onesappear at the end of the signalwith high amplitudes

and a triangular dispersion pattern. During the last 20 years, surfacewave properties have

been intensively exploited by various authors. The �rst applications consist of inverting the

measureddispersion curve as the fundamental Rayleigh mode including eventual on or more

clearly identi�ed higher modes(McMechan and Yedlin 1981,Gabrielset al. 1987,Stokoe et al.

1989,Herrmann 1994,Malagnini et al. 1995,Foti 2000,Soccoand Strobbia 2004). Inversions

of the measuredcurve taking into account the mode contributions or inversionsof the full

waveformswere recently proposed(Yoshizawa and Kennett 2002,Forbriger 2003b).

Here, we are only consideringthe inversion of the theoretical dispersioncurve to adopt an

approach consistent with the ambient vibration method for which no other type of inversion is

currently feasible.The body and the surfacewave are henceanalysedseparately.
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1.2.1 P � SV refracted waves

Classical refraction (Mota 1954) is achieved with sourcesplaced at the two ends and at the

middle of the line. Sourcesare locatedat sensorpositionsin order to control the time reference.

The �rst P-wave arrival times are picked on the signals. If the ground structure is made of

inclined homogeneouslayers with increasingvelocity with depth, the traveltime-distanceplot

allows the geometryand the seismicvelocity of the layers to be retrieved (Mota 1954). With a

limited set of data (24 valuesmaximum) and consideringthe experimental uncertainties which

can be high in noisy conditions, the solution is rarely unique and several Vp pro�les may �t the

data in a similar way.
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Figure 1.3: Referencemodel for refraction synthetic traveltime-distance plot. (a) Traveltime-distance plot
for three sources. (b) Interfacesof the referencemodel and the ray paths with the minimum traveltimes. (c)
Velocity pro�le at horizontal distance 0.

With the aim of extracting the di�erent solutions explaining the experimental traveltimes

in an objective way we developed a simple method basedon the neighbourhood algorithm

(Sambridge1999a,chapter 2). The method, the principlesof which areidentical to the inversion

of dispersioncurves(Wathelet et al. 2004),generatestwo random one-dimensionalVp pro�les

with a �xed number of layers, which de�ne a model with inclined layers. The Vp value within

each layer is randomly choseninsidean interval de�ned from a prior knowledgeof the geological
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Figure 1.4: Inversion of synthetic traveltime-distance plot. (a) Traveltime-distance plot for three sources
calculated for the generatedmodels. (b) Interfacesof the generatedmodels. (c) Generatedvelocity pro�les at
horizontal distance 0.

structure. For each generatedmodel, the ray paths are analytically calculatedusing the Snell-

Descarterefraction law for inclined interfacesand the traveltimes are computed for all source-

receiver distances.The experimental time-distancevaluesare comparedto the calculatedones

using the following mis�t function:

misf it =

vu
u
t 1

n

nX

i =0

�
texp � tcalc

ter r

� 2

(1.13)

where, texp is the experimental arrival time corrected by the initial time delay, tcalc is the

calculated arrival time for the current model, ter r is the phasepicking error or equal to texp if

no error estimation is available, and n is the number of receivers. The experimental error, which

depends upon the sharpnessof the P-wave arrival and the signal to noise ratio, is manually

estimated. This method was tested with successon synthetic models with constant velocity

layers and dipping interfaces,using two shots made in opposite directions. This technique is
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usedfor our real test casein section6.2.1on page6.2.1.

The method is illustrated for a referencemodel with three layers (�gure 1.3(b)). The

constant velocity inside each layer is represented in �gure 1.3(c) by the Vp pro�le measuredon

the left sideof the model (distance=0). The thin black lines in �gure 1.3(b) are the ray paths

with the minimum traveltimes corresponding to the plot of �gure 1.3(a). Figure 1.3(a) is the

traveltime-distanceplot obtained with three sourcesplacedat the two extremities and in the

middle of the section. Two inversion processesare launched generating30,000models among

which 18,000have a mis�t lower than 0.02. The lowest mis�t found is 0.00063.The generated

models are shown in �gure 1.4(b) and 1.4(c). The corresponding traveltime-distanceplots are

visible in �gure 1.4(a). Considering0.02asan acceptablemis�t, the depth of the �rst interface

is correctly retrieved but the depth of the secondone is poorly constrainedby the refraction

experiment, unlessa very high precisioncan be achieved while picking the arrival phaseof the

distant receivers. From �gure 1.4(c), the velocity is correctly inverted down to 16 m. Below

16 m, if all models with a mis�t lower than 0.02 are equally acceptable,any velocity between

1000and 4000m/s is equally valid to explain the experiment results.

1.2.2 SH refracted waves

The practical requirements and data processingfor SH waves are very similar to the P � SV

case.Shearwavespolarizedin the transversaldirection are generatedby beating on both sides

of a loadedwood timber oriented perpendicular to the recording line (Jongmans1992). Both

sides are used to remove the P-wave contribution by the meansof negative stacking. The

signalsare recordedon horizontal sensorsthe main axis of which is oriented perpendicular to

the receiver line. The processingof the traveltime-distancecurves is exactly the sameas for

P � SV refraction.

1.2.3 Surface wave inversion

The sensorsalong the line are consideredin the sameway as for ambient vibration arrays.

However, linear arrays have particular theoretical responsesthat prevent from using exactly

the samealgorithms. An exampleis calculated for 24 receivers placedevery 2 m in �gure1.5.

The vertical aliasing lines are visible at every multiple of � (= kmax ). Hence,kmax =2 corre-

sponds to � =4 m=2� sampl ing (one-dimensionalsampling theorem) where � is the wave length.

The maxima of the semblanceare searched only in the known direction of propagation(supple-

mentary parameter). Also, the signalsare always transient which meansthat sliding windows

cannot be calculated to evaluate the uncertainties. A single time window of �xed duration is

thus taken for all frequencies. This unique time window is processedin the sameway as in

section1.1.1on page1.1.1. No histogram is constructed(section1.1.1on page6) but the sem-

blanceis plotted with a colour grid in the frequency-velocity plane. The maxima of semblance

delineate the dispersion curve with eventually higher modes as sketched in �gure 1.6 for an

explosive load shot at 20 m of a line of 24 receivers. The details of this experiment are given
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in section6.2.1,on page128.

-4.0 -2.0 0.0 2.0 4.0
Wave number X (rad/m)

-4.0

-2.0

0.0

2.0

4.0

W
av

e
nu

m
be

rY
(r

ad
/m

)

Array transfert function
0.000 0.125 0.250 0.375 0.500

Figure 1.5: Theoretical array responsesfor a line
of 24 sensorsplaced every 2 m along X axis.

6 8 10 20 40

200

300

400

500

V
el

oc
ity

(m
/s

)

FK Semblance
3.75 7.50 11.25 15.00

Figure 1.6: Example of a f-k analysis for surface
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Implemen tation

Like the general f-k algorithm, this linear f-k has been implemented as a plug-in module in

GEOPSY. The resultswerecomparedwith the slantstack method available in the surfacewave

packagedistributed by Herrmann (1994).

1.3 Conclusions

In this chapter, we presented several methods to extract the dispersion(or the auto-correlation)

curvesfrom ambient vibration wave�elds and from triggeredwaves. In the next chapters,wede-

velop an inversiontechnique to infer sub-surfaceproperties from the dispersioncurve. In chap-

ter 6, the signal processingmethods brie
y introduced in this chapter (f-k, high-resolution,

auto-correlation, refraction tests and surfacewave inversion of active experiments) are illus-

trated by synthetic and real �eld experiments.



Chapter 2

The inversion algorithm

After the estimation of the dispersionor the auto-correlation curves,an inversiontool is devel-

oped to infer the ground structure, especially the seismicvelocities Vp and Vs. Chapters2 and

3 are dedicatedto the inversionprinciples and to the forward algorithm, respectively.

This chapter recalls the basic conceptsinvolved in the inversion theory. Several inversion

methods of commonuse in geophysics are brie
y reviewed. The principles of the neighbour-

hood algorithm (Sambridge 1999a)are detailed becauseit has beenchosenas the core of our

dispersioncurve inversion tool. Finally, an improvement to the standard neighbourhood algo-

rithm is proposedwhen the external limits of the parameter spaceare not �xed (conditional

neighbourhood algorithm).

2.1 De�nition

Mo del

4 Unknowns
4 Physical properties

forw ard problem

inverse problem

Observ ables

4 Data
4 Measurements

Figure 2.1: De�nition of an inversion problem

Physical properties are usually measuredthrough a scienti�c experiment. For instance,

Torricelli invented the mercury barometer to measurethe atmosphericpressurePatm . Patm is

estimated by comparing the height of the mercury column (hmer c) with a graduated scale. If

Patm is known, hmer c can be calculated with a simple linear relationship involving the density

of mercury.

hmer c =
Patm

13:5
(2.1)

This is the forw ard problem . However, during the scienti�c experiment, the observable is

19
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not the pressurebut the height of mercury. Henceequation (2.1) must be inverted to calculate

the model parameter Patm from the observable quantit y hmer c. The inverse problem is

solved with the following equation

Patm = 13:5 hmer c (2.2)

This is an exampleof the inversion of a linear problem which is pretty simple and always

solved analytically. In this case, the number of unknowns is one as well as the number of

observable (or data). Scienti�c models are generally completely described by the meansof

more than oneparameter. With thesemodels,it is alsopossibleto calculatevarioustheoretical

characteristics. For instance,a characteristic of the model may be a curve which is numerically

represented by a vector of nobs components. Hence the forward problem is a function that

transforms a parameter spaceof dimension npar am (number of involved parameters) into the

observable spaceof dimensionnobs.

If the function is linear, the linear algebra is usedto solved the inversion problem. In this

case,there is no absolute limit for the number of observablesand the number of parameters.

If nobs is lessthan npar am , there is an in�nite number of solutions for the parametervector. On

the contrary, if nobs is greater than npar am , a least-squaremethod is generallyusedto �nd the

best set of parameters.

However, in most situations, the relationship is not linear and even more, the forward

problemcannotbesolvedanalytically. Evenif the forward problemhasan analytical expression,

there are very few special caseswherethe inversionproblem is alsoanalytical. Hence,in most

cases,an inversionmethod is necessaryto calculate the set of parameterscorresponding to the

observables. The number of solutions of the inverseproblem is generallya complex issue. For

instance, if the forward function is simply y = x2 between two one-dimensionalspaces,the

inverseproblem may have zero, one or two solutions. The non-uniquenessis hencespeci�c to

each problem and has to be studied on a case-by-casebasis.

All scienti�c observables are measuredwith a certain degreeof error, even if it is not

explicitly quanti�ed. In Torricelli's experiment, the height of mercury can be measuredfor

instance down to a 0.5 mm precision. In this one-dimensionallinear example, the error on

Patm is easily deduced. For multi-dimensional linear problems the error propagation is also

possible. But for non linear and multi-dimensional problems, calculating the errors on the

model parametersfrom the errors on the acquiredmeasurements is not straightforward.

2.2 Av ailable metho ds

All forward problemscan be summarizedby

O = [O1; : : : ; Onobs ]T = f ([p1; : : : ; pnpar am ]T ) (2.3)
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whereOi arethe observablevalues1 and pi arethe model parameters2. Generally, a newfunction

L 2 < is constructed3 which vanisheswhen f is equal to O. The inverseproblem is equivalent

to �nd the set of p1; : : : ; pnpar am that veri�es

L([O1; : : : ; Onobs ]T � f ([p1; : : : ; pnpar am ]T ) = 0 (2.4)

Practically, the minimum of L is searched acrossthe parameter spacein di�erent ways

brie
y explainedin the following sections.

2.2.1 Gridding metho d

If the number of parametersis small, lessthan four4, it is conceivable to calculate L for each

combination of parameters. Theoretically, this method o�ers the best exploration of the pa-

rameter spacecomparedto all other techniques. However, consideringthe number of forward

problemsto solve, this method is very limited. For example,if the prior rangeof each param-

eter is discretizedwith 50 samples,if the time to calculateoneforward problem is onesecond,

and if the dimensionof the parameterspaceis �v e, the total time required for the inversion is

10 years.

2.2.2 Iterativ e metho ds

Starting from a �rst estimation of the model parametersor from whatever appropriate model,

the iterativ e method convergesto the minimum of L by modifying the current model according

to the local properties of function L. In the caseof Newton-Raphson,damped least-squareor

gradient methods, the partial derivativesor the Jacobianmatrix at the current model orientates

the descent towards the solution (Nolet 1981,Tarantola 1987,Herrmann1994,.. . ). Calculating

the partial derivativesallowsa linearization of the problemand linear algebrais usedto calculate

a new estimateof the solution. The processis repeatedthrough several iterations until �nding

an acceptableminimum. Downhill simplex(Presset al. 1992)is an other iterativ e method that

requiresonly function evaluations, not derivative. It is basedon geometricalprinciples.

Thesekinds of methods are the exact opposite of the gridding method. The exploration of

the parameterspaceis limited to the path followed during the successive iterations. They are

mostly usedfor high dimensionalparameterspacesfor their abilit y to quickly convergeto the

solution. The number of function computations is very small comparedto all other methods.

If there are more that oneminimum or if the function L hasa complexshape with multiple

secondaryminima, thosemethods are likely to convergeto oneof them which is probably not

the unique and the absolute minimum. The �nal solution highly depends upon the starting

model. The non-uniqueness,a commonphenomenonin inverseproblems(Sambridge 2001),can

1Also called data curve, measurements, or target curve.
2Also called unknowns or, simply, parameters.
3This function is called the mis�t, the cost, the error or the residual function. It is a real number
4According to the time neededfor one computation.
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be apprehendedonly by a manual selectionof "good" starting models. Thesemethods are then

inadequatewhen the nonlinearity becomessevere, and can produce optimistic resolution esti-

mates,usually calculatedaround a singlebestdata-�t model (Sambridge 2001). Shapiro(1996)

showed, that the solutions obtained from classicalsurface wave inversion schemes(damped

least-square)are too restrictive and uncertainties are not correctly estimated.

From the starting model, the iterativ e processmay lead the current model to whatever part

of the parameterspace,being in this case< n 5. It dependsupon the unknown shape of function

L. Indeed,L is known for only a discretenumber of points wherethe forward problem hasbeen

solved. In this framework, it is impossibleto guarantee that the current model stays within a

de�ned zoneof the parameter spacefor all iterations. The limits of this zoneare adjusted so

that it enclosesall potential solutions, given the prior knowledgewe have about the model.

2.2.3 Neural Net works

Michaelsand Smith (1997) suggestedto useneural networks to invert surfacewaves, inferring

the sub-surfaceproperties. Arti�cial neural networks are computer programsthat simulate the

biological neural networks. Calder�on-Mac��as et al. (2000) also usedthem to inverseelectrical

data. From input stimuli (= observablesvalues), it provides an output set of values(= model

parameters).As a human brain, it needseducationto react correctly in each situations. Hence,

the neural network usedfor surfacewave inversionis trained with seriesof the synthetic signals

for which the model is perfectly known. To summarize, the network is a generic mean of

mapping observable to model parameters.

A correct behaviour is obtained only if the network hasbeentrained with synthetic models

closeto the true model. Hence,this method cannot be usedto scanall potential models that

correspond to experimental data. Moreover, the error propagation cannot be included in an

easyway and the non-uniquenessis never handled.

2.2.4 Mon te Carlo metho ds

These methods are basedon a uniform pseudo-randomsampling of the parameter space. If

their principle is not new, they gain successamongstthe geophysicistsduring the last 20 years,

due to the increasingpower of modern computers. The question addressedby such methods

is not only �nding the model with the best data �t but also to retrieve information about the

resolution power of a particular application. This area of statistical inferenceis reviewed for

exampleby Edwards (1992), Mosegaardand Tarantola (1995), Sambridge (1999b). The role

of prior information is investigated by all theseauthors but especially by Scalesand Tenorio

(2001). The parameter spacedoes not generally extend to < n like in the caseof iterativ e

methods but it is restricted to a volume de�ned by the parameterprior ranges.All generated

modelsare always con�ned in this volume.

When the dimensionality of the parameter spaceincreases,the basic random generation

5The number of dimension of the ensemble is n = npar am
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of models becomestotally ine�cien t. This is why several re�ned approacheswere developed

during the last two decades,for instancethe simulated annealing(Rothman 1985,SenandSto�a

1991)and the geneticalgorithms (Sto�a and Sen1991,Lomax and Snieder1995,Boschetti et al.

1996,Yamanaka and Ishida 1996). There are alsomany variants of thesemethods, combining

them with neural networks or with gradient methods (e.g. Chunduru et al. 1996,Devilee1999,

Boschetti and Moresi2001). The objective of thesetechniquesis to seeka model with a globally

optimal data mis�t value. Thesemethods and their variants usually needempirical tuning of

several parametersthat control the inversion process,ensuring computational e�ciency and

robustnessagainst entrapment in local minima.

Recently, Sambridge (1999a)proposedan entirely di�erent method basedon the partition

of the parameterspaceinto Voronoi cells6( neighbourhood algorithm). It has only two tuning

parametersand it is claimed as self-adaptive in searching a parameter space. The objective,

which is di�erent from the previouslymentioned methods, is to sample(in an optimal situation)

all the regionsof the parameterspacewheremodelswith acceptabledata �t arefound. This last

technique has beenchosenfor our dispersioncurve inversion tool. Its principles are examined

with more details in the next section.

2.3 The neigh bourho od algorithm

The Voronoidecomposition of the parameterspaceis the baseof an approximation of the mis�t

function L which is progressively re�ned during the inversion process. The approximation is

set as constant inside each cell and the mis�t value calculated at the central point is a�ected

to the whole cell. A two-dimensionalparameterspaceis given as an examplein �gure 2.2(a).

The black dots are somemodel points for which a mis�t is calculated.

The neighbourhood algorithm needsfour tuning parameters:

it max is the number of iteration to perform;

ns0 is the number of modelschosenat random inside the parameterspaceat the beginningof

the inversion;

ns is the number of models to generateat each iteration;

nr is the number of best cells (with the lowest mis�t) wherethe ns modelsare generated.

The inversionprocessis composedof the following phases:

1. a set of ns0 models is randomly generatedwith a uniform probability in the parameter

space;

2. the mis�t function is calculated for the most recently generatedmodels;

3. the nr modelswith the lowest mis�t of all modelsgeneratedso far are selected;

6It is a unique decomposition of the spaceinto n cellsaround n points pi . The cell around point pi is de�ned
by the ensemble of points that are closer to pi than to whatever other point pj where j 6= i .
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4. generatean averageof ns
n r

new sampleswith a uniform probability in each selectedcell;

5. add the ns new samplesto the previousensemble of modelsand go back to (2).
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Figure 2.2: Voronoi cells for a two-dimensionalparameter space(from Sambridge (1999a)).

Figure 2.2(a) is an exampleof a two-dimensionalparametershowing the models(black dots)

and the limits of the Voronoi cells. ns0 (=9, in this case)modelsaregeneratedand the grey cell

hasthe lowest mis�t. In this example,seven new modelsare generatedin onecell (nr = 1, and

ns = 7). Figure 2.2(b) depicts the Voronoi geometry after the �rst iteration. The sizeof the

original cell decreasesas the sampling rate increases.If the cell with the grey outline has the

lowest mis�t, the density of samplingwill not decreasesystematicallyafter each iteration. This

is an interesting property of the Voronoi geometry that allows the centre of sampling to jump

from placeto place,whilst always sampling the most promising nr regionssimultaneously.

In the neighbourhood algorithm, a random walk (Gibbs sampler) is performedwith a uni-

form probability density function inside the cell and zero outside. A walk is a sequenceof

perturbations to a model along all axis. The modi�ed model is statistically independent of the

original model. Asymptotically, the samplesproducedby this walk will beuniformly distributed

inside the cell regardlessof its shape. To con�ne the random walk inside a particular cell it

is mandatory to calculate the multi-dimensional limits of the cell. Calculating the complete

Voronoi geometryfor high dimensionalspacesbecomespractically impossiblewhenthe number

of models increases.Sambridge (1999a) proposedan original algorithm to compute only the

limits along lines which are parallel to axis, in a preciseand e�cien t way. Theselines support

the successive segments of the random walks.

There are only a few number of control parameters: ns0, ns, nr , and it max which is the

maximum number of iterations. The neighbourhood algorithm is more exploratory if the ns

new samplesare distributed on many cells and it optimizes more if they are restricted to the

very few best cells. Typical valuesfor the tuning parametersare 100for ns0, ns, nr . To forcea

better optimization, nr may be set to 5, 10 or 50. Testsshow that generallybetter mis�ts are

obtained with fewer iterations if nr is low, but the inversion is more trapped in local minima.

The exploratory mode (e.g. nr =100 and ns=100) usually provides better �nal mis�ts if the
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inversionis conductedwith a great number of iterations. The number of iterations rangesfrom

50 to 200. This makes a total of 5,000to 20,000generatedmodels. Compared to linearized

methods the number of forward computations is much greater. Consequently, the forward

computation has to be correct for each parameter set without a visual check and it must be

highly optimized to reducethe total computation time. Theseaspectsareanalysedin chapter 3

when designingthe dispersioncurve algorithm.

The neighbourhood algorithm like all other Monte Carlo techniques relies on a quasi or

pseudo-randomgenerator. A basicrandom generatoron a computer is a seriesof numberswith

a uniform probability, which is initialized by a special number called the random seed. The

seedmay take any integer value. Two inversionprocessesstarted with distinct seedsgenerate

di�erent models. However, if the problem is su�cien tly constrained,the algorithm converges

towardsthe samezoneof the parameterspace.For lessconstrainedparameters,the investigated

zonesmay be quite di�erent. An interest of launching several inversionprocessesfor the same

caseis to test the robustnessof the �ne result. All sets of models generatedby separated

processescan be mergedto construct a more re�ned approximation of the mis�t function.

The ensemble of models obtained from the neighbourhood algorithm has not the same

statistical properties as the posterior probability density. Moreover, the statistical properties

of the resulting ensemble strongly depend upon the tuning parameters. If lots of iterations

are performed, the number of models near the best model is greater than for an inversion

with lessiterations. By the meansof a resamplingof the parameterspaceand approximating

the posterior probability density with the mis�t function, Sambridge (1999b) calculated the

Bayesianintegrals on an ensemble of modelshaving the statistical properties corresponding to

the posterior probability density. In our work, the algorithm we tested did not work properly,

probably due to internal bugs. By the lack of time, we did not investigatemore this approach

but this secondstageof the inversionis certainly valuable to measurethe resolution and trade-

o� in a quantitativ e way.

2.4 Conditional parameter spaces

In its original form, the neighbourhood algorithm handlesa parameter spacewith orthogonal

boundaries. All parametershave a uniform probability within prior �xed limits. They are set

at the beginning of the processwith constant values. If the limit of one parameter depends

upon the value of another parameter, it is necessaryto implement a variable transformation.

For instance if parameter p1 belongsto [l1; u1] where l1 and u1 are constant numbers, and

p2 < � p1, the prior interval of parameterp2 is [l2; u2] (if u2 < � p1) or [l2; � p1] (if u2 > � p1), l2
being lessthan � l1. The variable transformation is p2 = l2 + p0

2 (� p1 � l2) wherep0
2 is a random

parameterbetween0 and 1 that replacesp2 in the neighbourhood model. The random variable

p2 is the product of two random variables with uniform probabilities. The probability of p2

cannot be calculated analytically in an easyway, but it is certainly not uniform anymore. In

chapter 4, for complexground structures there are numerousconditions of this type, and the
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Figure 2.3: Comparison of the distributions generated by variable transformation and by selection. 1000
modelsare generated. (a) Random distribution of two parameterswith no condition. (b) The condition p1 < p2

is applied with a variable transformation. (c) The condition is p1 < p2 is applied by rejecting bad model, but
conservingthe total number of models.

variable transformation is not an e�cien t and 
exible method. Figure 2.3(b) givesan example

of the e�ects of the variable transformation on the model distribution acrossthe parameter

space(� = 1). Compared to a uniform distribution (�gure 2.3(a)), the region at low p1 is

over-sampledrelative to other parts of the space.

The original Fortran code and the stepsdescribed in Sambridge (1999a)make a clear dis-

tinction between the generationof the random models and the computation of the mis�t by

a user supplied function. Hence,at the user level, it is not possibleto indicate to the neigh-

bourhood algorithm that a particular model is not valid. Modi�cations of the original code to

implement such a feature cannot be donein an easy, elegant and compactway. Moreover, it is

written in Fortran77 with static vectors. Consequently, the maximum number of models to be

generatedis hard coded. All thesereasonsled us to re-write the algorithm in C++.

A list of parametersand their prior ranges,aswell asa list of conditionsof the type pi < � pj

de�ne the conditional parameterspace.The initial rangesare eventually adjustedaccordingto

the list of conditions. For instance, if the input rangesare p1 2 [50; 200] and p2 2 [100; 250],

and if p2 < p1, the intervals are modi�ed as p1 2 [100; 200] and p2 2 [100; 200]. These

conditions are called the low level conditions . The above condition is a forw ard condition

for parameterp2. Its counterpart, p1 > p2, is a backw ard condition for parameterp1. Other

more complexconditions, eventually involving more than two parameters7 are called the high

level conditions . The �rst type of conditionsare checked insidethe neighbourhood algorithm

itself, whereasthe last onesarechecked by the usersuppliedfunction that calculatesthe mis�t.

Contrary to the original Fortran implementation, the mis�t function returns also a boolean

value that is false if the mis�t cannot be calculated (limits of the forward algorithm, physical

or prior conditions not met when the �nal model is constructed).

1. A set of ns0 models is randomly generatedwith a uniform probability in the parameter
7For example, in the caseof a one-dimensionalground structure (seechapter 4), the Vp pro�le may be �xed

from the results of a refraction survey. The thicknessesof the Vs layers may be set independently , eventually
with a more re�ned discretization. The conditions induced by the natural limits of Poisson'sratio have to take
the depth parameters into account, besidesusual Vp and Vs .
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spaceand with the ful�lmen t of all conditions..

(a) random generationof parameterpi betweenl i and ui ;

(b) check of low level forward conditions attached to parameterpi , if okay, increment i ;

(c) while all parametersare not generatedgo back to step (a);

(d) As a set of parameter satisfying the low level conditions has beengenerated,check

the high level conditions and calculate the mis�t;

(e) if the model is not acceptedby the high level conditions, restart from the �rst

parameter in step (a);

(f ) the model is acceptedand it is addedat the endof the main model vector, a vector of

the referencesto the nr best models,sorted by increasingmis�ts is kept up-to-date;

(g) while ns0 models are not generated,restart from the �rst parameter in step (a) to

generatea new model;

2. Save the current nr best models

3. Generatean averageof ns
n r

new sampleswith a uniform probability in each selectedcell

(nr cells).

(a) generateonemodel with a Markov chain equivalent to onedescribed by Sambridge

(1999a),except that the "triangular" external shape (induced by the low level con-

ditions) of the parameterspaceis a supplementary limit of the Voronoi cells;

(b) if the high level conditions are satis�ed, calculate the mis�t and store the model in

the sameway as in step (1)(f );

(c) while ns new modelsare not generated,generatea new model in step (a);

4. While it max iterations are not completed,go back to (2).
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Figure 2.4: High level condition inter-

sectionwith Voronoi cellsfor a 2D param-

eter space. The valid models are on the

right of the parameter spacelimit marked

by the thick black curve. The black dots

are the models so far generated.

If no conditions are set, this particular implementa-

tion of the neighbourhood algorithm gives the samere-

sults as the standard code and with approximately the

samecomputation time. Contrary to the standard code

implemented in the main dispersioncurve inversion tool,

this algorithm hasnot beentested intensively. At least in

one situation, when the theoretical or true model is very

closeto a high level condition, the algorithm fails to gen-

eratenewmodels. This is illustrated in �gure 2.4 for a 2D

case. When generatinga new model in the cell with the

grey outline, there are about one third of chance to get

a good model. For higher dimensionsof the parameter

space,the situation is even worse. This issuemight be
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solved by introducing more complex low level conditions,

like: \if p1 < p2 and p2 < p3, then check is p4 < � p5".

Sambridge (2001) proposeda re�ned de�nition of the

mis�t function to sampleall regionsof the parameterspace

where the models have an acceptablemis�t. Particularly, if the mis�t found is less than a

threshold, the model is stored with the mis�t equal to the threshold. Below this threshold,

the di�erences in the model responseare consideredasnot signi�cant. On this basis,a re�ned

algorithm might be developed with the objective of �nding the exact boundariesof all the

possibleacceptableregions. It may work by trying to �nd bad�tting modelsinsidethe good cells

convergingto a re�ned de�nition of the boundariesregioncontaining the solutions. Recognizing

contiguous cells with acceptablemis�t cannot be done in a perfect way for high dimensional

parameterspaces.But even with an approached computation, it might be su�cien t to identify

the various modesof the current mis�t function. The search may be oriented towards models

located betweenthosepoles,for instanceby creating a new temporary and smaller parameter

spacefocusedon the badly sampledregion.

This improvement of the standard neighbourhood algorithm is still under testing at the

time of writing this thesis. Consequently, no examplecan be given to illustrate it.

2.5 Conclusions

The neighbourhood algorithm is a 
exible and powerful inversionmethod which requiresreliable

and fast forward calculation codes. Its abilit y to explore all the possiblesolutions is a strong

advantage over linearizedmethods for complexand sometimespoorly constrainedgeophysical

problems.



Chapter 3

Forw ard computation

This chapter aims at designingproper algorithms to calculate the dispersion, ellipticit y, and

auto-correlation curves in the framework of a pseudo-randominversion. A direct search algo-

rithm, such asthe neighbourhood algorithm described in section2.3, generatesa great number

of models for which the forward calculations are neededto obtain a mis�t value. The mis�t

value summarizesthe degreeof appropriatenessof a generatedmodel to explain the observed

data. Becauseof the amount of computations, the forward algorithm must be fast and secure.

Hence,much attention hasbeenpaid to the optimizations and to the quality of the �nal results.

Also, the sensitivity of the three curvesto the model properties are studied in detail.

3.1 Disp ersion Curv es

This section describes the computation of the theoretical dispersion curve of a ground struc-

ture. This curve is calculated for models the properties of which vary with depth only (one-

dimensionalstructure). The pro�les arediscretizedalongthe depth axisby a stack of layerswith

uniform properties assketched by Fig. 3.1. The model parametersare the compressional-wave

velocity (Vp), the shear-wave velocity (Vs), and the density (� ) in the layers.

Though implementations of the dispersioncurve for Love and Rayleigh wavesalready exist

for years (e.g. in Fortran, Herrmann 1994), the basic algorithms are studied in detail and

optimized to reducethe CPU time consumption. The proposedalgorithm is written in C++

and operates only on dynamic memory vectors without any disk access. This considerably

decreasesthe total required time. The speci�cities of Love and Rayleigh wavesare investigated

separatelyfrom the points of view of the theory and the implementation.

The computation of theoretical dispersion curves is basedon the eigenvalue problem de-

scribed by Thomson (1950) and Haskell (1953), subsequently modi�ed by Knopo� (1964),

Dunkin (1965) and Herrmann (1994). We use the Dunkin's notations, here after and inside

the sourcecode. The Herrmann's code usesalmost the samemethod as Dunkin. For Love

and Rayleigh waves, the equation of motion can be reducedto a systemof simple di�erential

equationswith a derivative of the �rst order in z. In the caseof a stack of horizontal layers,

this problem can be solved by the propagator-matrix method (Gilb ert and Backus 1966,Aki

29
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Figure 3.1: Schematic one-dimensionalmodel de�ned by a stack of (n + 1) layers. zi are the depths of the top
of each layer.

and Richards 2002),described in the next section.

3.1.1 Propagator-matrix metho d

For a stack of horizontal and uniform layers,Gilbert and Backus (1966) proposeda method to

solve the di�erential equation de�ned by

df (z)
dz

= A(z)f (z) (3.1)

wheref is a vector of n components and A is a n*n matrix. If A is independent of z, which is

valid inside a layer, the solution is given by

f (z) = G(z; z0)f (z0) (3.2)

where,

G(z; z0) = e(z� z0)A (z) (3.3)

Equation (3.3) can be developed to �nd the elements of matrix G using an eigenvalue decom-

position of matrix A (Aki and Richards 2002). Becauseof the continuity of the displacement

and the stressesat all interfacesbetween two layers, the following property is easily deduced

from equation (3.2):

f (z2) = G(z2; z1)f (z1) = G(z2; z1)G(z1; z0)f (z0) (3.4)
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Hence,the vector f (z) at depth z, inside layer n is:

f (z) = G(z; zn )G(zn ; zn� 1) : : : G(z1; z0)f (z0) (3.5)

The propagator matrices G are functions of the depth at the top and at the bottom of each

layer, and of the matrix A which dependsupon layer properties. For Love and Rayleigh, vector

f (z) is called the motion-stressvector de�ned in sections3.1.3and 3.1.4,respectively.

3.1.2 Displacemen ts, Stresses, and strains

This section recalls the relationships between the displacement vector, the strain matrix and

the stressmatrix in the framework of the linear theory of elasticity. If the displacements along

axis x i are in�nitesimal (ui wherei may be 1, 2 or 3), the strain matrix is de�ned by

" ij =
1
2

�
@ui

@x j
+

@uj

@x i

�
(3.6)

The stressmatrix is linked to the strain matrix by the meansof the Hooke tensor cij kl (81

components reducingto 21dueto symmetries). Using the summationrule for replicatedindices

inside a product, the stresstensor can be written as

� ij = cij kl" kl =
3X

k=1

3X

l=1

cij kl" kl (3.7)

In the caseof isotropic medium, the 21 independent components reduce to the two Lam�e

moduli, � and � , and equation (3.7) is now

� ij = �� ij (� kl " kl ) + � (� ik � j l + � il � j k)" kl (3.8)

where� ij is the Kronecker symbol (� ij = 1 if i = j or 0 if i 6= j ).

In the absenceof volumetric forces, the equation of motion is a di�erential equation of

displacements and stresses.

�
d2ui

dt2
=

3X

j =1

@� j i

@x j
(3.9)

where � is the density. For clarity, in the next sections,numerical indices i are replacedby

indicesx, y, and z, and x i are replacedby x, y, and z.

3.1.3 Eigen value problem for Love waves

Theory

In a vertically heterogeneous,isotropic and elastic medium occupying a half-space,equation

(3.9) for Love waveshasa solution of the form:
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ux = 0

uy = l(k; z; ! )ei (kx� ! t ) (3.10)

uz = 0

ux , uy and uz are the radial, transversal and vertical components, respectively. VL = !
k (m/s)

is the Love velocity at angular frequency! (rad/s), k is the wavenumber in the x direction.

l(k; z; ! ) is the real amplitude, phaseshifts are ignored as only one component is considered.

The associated non-null stressesare (from equations(3.6) and (3.8)):

� xy = ik � (z)lei (kx� ! t ) (3.11)

� yz = � (z)
dl
dz

ei (kx� ! t )

� (z) = � (z)Vs(z)2 is the shearrigidit y. Let call
�
� (z) dl

dz

�
by l � . A motion-stressvector for Love

waves([l ; l � ]T ) is de�ned so that equation of motion (3.9) can be transformed into

d
dz

 
l

l �

!

=

 
0 1=� (z)

k2� (z) � ! 2� (z) 0

!  
l

l �

!

(3.12)

which hasthe form of equation (3.1). For surfacewaves,the boundary conditions require that:

l ! 0 when z ! 1 (3.13)

l � = 0 at the free surface z = z0 (3.14)

Becauseequation(3.12) hasthe sameform asequation (3.1), the solution for the motion-stress

vector is givenby equation(3.5). The condition on the motion-stressat in�nit y (equation(3.13))

cannot be introduced directly. It is transformed into a radiation condition that no up-going

waves are found in the bottom half-space. For SH plane waves, the amplitudes of downgoing

( �Sn ) and up going ( �Sn) waves traveling acrossan homogeneoushalf spaceare function of the

motion-stressvector at the top of the half space(z = zn ) (Aki and Richards 2002)

 
�Sn

�Sn

!

= T � 1
n

 
l (zn )

l � (zn )

!

(3.15)

where,

T � 1
n =

1
2� n � n

 
� n � ne� n z � e� n z=V2

sn

� n � ne� � n z e� � n z=V2
sn

!

(3.16)

� 2
n = k2 �

! 2

V 2
sn

(3.17)
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Vsn is the velocity of S waves(m/s). The subscript n denotesparametersde�ned for layer n as

represented in �gure 3.1. The motion-stressvector is propagatedto z0 by the meansof equation

(3.5). Equation (3.15) becomes

 
�Sn

�Sn

!

= T � 1
n G(zn ; zn� 1) : : : G(z1; z0)

 
l(z0)

l � (z0)

!

(3.18)

where,

G(zn ; zn� 1) =

 
cosh[� n� 1(zn � zn� 1)] 1=(� n� 1� n� 1)sinh[� n� 1(zn � zn� 1)]

� n� 1� n� 1sinh[� n� 1(zn � zn� 1)] cosh[� n� 1(zn � zn� 1)]

!

(3.19)

Introducing the boundary conditions (equations(3.13) and (3.14)) into equation (3.18) gives

 
�Sn

0

!

= T � 1
n Gn : : : G1

 
l (z0)

0

!

=

 
l11 l12

l21 l22

!

| {z }
L (z0 )

 
l (z0)

0

!

(3.20)

which has only non trivial solutions when l21 vanishes.The problem of �nding the dispersion

curvesfor Love wavesis hencereducedto a root search along the slownessor the velocity axis

for a given frequency. For a given frequency( !
2� ), only a few discrete valuesare possiblefor

the velocity of the Love surfacewave (VL =
h

!
k(! )

i

i
), corresponding to the dispersioncurvesof

various modes.

Eigenfunctions

The functions l and l � de�ned in equations(3.10) and (3.11) are the eigenfunctionsof Love

waves. For each depth and frequency, di�erent valuesof eigenfunctionsexist corresponding to

all roots of l21(z0) (modes). The motion-stressvector at depth z0 can be de�ned numerically

by normalizing l(z0) to any arbitrary value. The computation of the eigenfunctionsat the next

layer interface is done by multiplying the motion-stressvector at depth z0 by G� 1
1 . The same

task is repeated until reaching the top of the half-space. Inside a particular layer, the values

of the eigenfunctionsare alsocalculatedfrom the de�nition of G� 1
n (equation (3.18). Examples

of eigenfunctionvariation with depth can be found in Aki and Richards (2002). Among other

features, they show that the penetration depth is frequencydependent. For high frequencies,

only the most super�cial layers are a�ected by displacements and stresses.

Implemen tation

The problem is to �nd the solutions of the equation l21(VL ) = 0. The computation of the

element l21(z0) requiresthe multiplication of n 2x2 matrices,whereasthree of the four elements
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of the �nal matrix L(z0) are useless.From the formulae of the product of two 2x2 matrices,

only l21(z1) and l22(z1) are necessaryfor computing l21(z0) which, in turn, requiresl21(z2) and

l22(z2) (equation 3.21).

 
� �

l21(z0) �

!

| {z }
L (z0 )

= T � 1
n Gn : : : G1 (3.21)

=

 
� �

l21(zn ) l22(zn )

!

| {z }
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n

Gn : : : G1

: : :
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� �

l21(z2) l22(z2)

!

| {z }
L (z2 )

G2G1

=

 
� �

l21(z1) l22(z1)

!

| {z }
L (z1 )

G1

To calculate L(zn ) = T � 1
n , the factors e� � n z are dropped from elements l21(zn ) and l22(zn )

(equation (3.16) becausewe are looking for the roots of l21(VL ).

From equation(3.17), � n is imaginary if k is lessthan the wavenumber of S-wavesksn = ! 2

V 2
sn

.

To avoid using complex number libraries, the sinh and cosh functions of equation (3.19) are

replacedby the corresponding trigonometric functions sin and cos. For real valuesof � n , the

hyperbolic functions do not tolerate high arguments. They are preferablycomputedfrom their

analytical formulae:

sinh(ix ) =
eix � e� ix

2
= ex 1 � e� 2x

2
(3.22)

cosh(ix ) =
eix + e� ix

2
= ex 1 + e� 2x

2

Hence,an exponential factor canbedroppedfrom the expressionof G in equation(3.19)because

we are seekingfor roots. When factor ex is dropped, the computation of both hyperbolic

functions require the calculation of only oneexponential function. As we are working in double

precision(
oating points of 64 bits), all exponential valuese� 2x lessthan 10� 19 are equivalent

to zerosin equations(3.22). Thus, in equation 3.19, the hyperbolic functions reduceto 1
2 if

� n� 1(zn � zn� 1) >
19
2

� ln(10) � 21:2 (3.23)

In each layer, values of l21(zi ) are scaledto �t in the range between � 105 to 105, to avoid

over
ow when propagating acrossa stack with many layers.

In �gure 3.2, the values taken by l21(z0) for all couples(! ; k) are shown in the caseof a

two-layer model: 200 m/s for Vs in the �rst 25 m thick layer, and 1000m/s in the half-space.
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The �rst 12 modes located at the root of the function are highlighted by black lines. The

negative valuesof the function are not represented (white areas). The normal modesof Love

are observed betweenthe minimum and the maximum Vs of the model. The fundamental mode

is present over the whole frequency range, whereaseach higher mode has its own threshold

frequencyunder which it doesnot exist.
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Figure 3.2: Valuestaken by l21(z0) at di�eren t couples(frequency, velocity) for a two-layer model.

Finding the roots of l21(z0) is not straightforward. This issue is treated in section 3.1.5

together with the overall performancesof this algorithm.

3.1.4 Eigen value problem for Rayleigh waves

Theory

In a vertically heterogeneous,isotropic and elastic medium occupying a half-space,a P � SV

wave travelling along X axis generatesdisplacements along X and Z axis of the form

ux = r1(k; z; ! )ei (kx� ! t )

uy = 0 (3.24)

uz = r2(k; z; ! )ei (kx� ! t )
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where ux , uy and uz are the radial, transversal and vertical components, respectively, r 1 and

r2 are the complexamplitudes (including phaseshifts betweencomponents), ! is the angular

frequency, and VR = !
k is the velocity of Rayleigh waves (m/s). A motion-stressvector for

Rayleigh wavesis de�ned in a similar way as for Love case(section 3.1.3).

r (k; z; ! ) =

0

B
B
B
B
@

r1(k; z; ! )

r2(k; z; ! )

r �
1 (k; z; ! )

r �
2 (k; z; ! )

1

C
C
C
C
A

(3.25)

where,

r �
1 = i

�
(� + 2� )

dr2

dz
+ k�r 1

�
(3.26)

r �
2 = �

�
dr1

dz
� kr2

�

r �
1 is the amplitude of the vertical compressionstress� zz and r �

2 is the amplitude of the ra-

dial shearstress� xz . From equation of motion (3.9), the solution must satisfy the following

di�erential equation:

d
dz
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C
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(3.27)

where� is the density, � and � are Lam�e moduli. The z dependenciesof � , � and � have been

dropped for simplicity. For surfacewaves,the boundary conditions require that:

r1 ! 0 and r2 ! 0 when z ! 1 (3.28)

r �
1 = r �

2 = 0 at the free surface z = z0 (3.29)

Similarly to Love case,the equation of motion is reduced to an equation of the sameform

as equation (3.1). The solution for the motion-stressvector is given by equation (3.5). The

constraint on the motion-stressat in�nit y is transformed into a radiation condition that no

up-going waves are found in the bottom half-space.For P � SV plane waves, the amplitudes

of downgoing ( �Pn and �Sn for P and S-waves,respectively) and up going ( �Pn and �Sn for P and

S-waves, respectively) waves traveling acrossan homogeneoushalf spaceare function of the

motion-stressvector at the top of the half space(z = zn ) (Dunkin 1965, Aki and Richards

2002). The motion-stressvector is propagated to z0 by the meansof equation (3.5). The
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subscript n is addedto all parametersde�ned for layer n.

0
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@
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�Sn

1

C
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= T � 1
n
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2 (zn )

1

C
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= T � 1
n G(zn ; zn� 1) : : : G(z1; z0)r (z0) (3.30)

where,

T � 1
n =

� V 2
sn

2� n ĥn k̂n ! 2
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2i� nkĥn k̂n � n ln k̂n ĥn k̂n ik k̂n

� � n ln k̂n 2i� nkĥn k̂n ik ĥn � ĥn k̂n
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(3.31)

where,ĥ2
n = 2k2 � ! 2

V 2
pn

, Vpn is the velocity of P waves(m/s), k̂2
n = 2k2 � ! 2

V 2
sn

, Vsn is the velocity

of S waves(m/s), ln = k2 + k̂2
n , � n = � nV 2

sn is the rigidit y, and � n is the density (t/m 3).

Merging boundary conditions with equation (3.30),
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This equation is always true when the sub-determinant (r 11r22 � r12r21) vanishes.Like in the

Love case,the problem of �nding the dispersioncurves is thus reducedto a root search along

the slownessor the velocity axis for a given frequency. However asstated by Dunkin (1965), the

terms of the sub-determinant can becomevery large. Subtracting two large numbers results in

a lossof signi�cant digits, which implies the useof very high precisioncomputations (e.g. 128

bit numbers or even more whereascomputersare classicallylimited to 32 or 64 bits). Hence,

Dunkin proposedan alternative way of propagating motion-stressvector by the meansof the

following theorem. If P = A (0) A(1) : : : A(n� 1)A(n) then
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(3.33)

wherep

�
�
�
�
�

i j

k l

�
�
�
�
�

= pik pj l � pil pj k is the secondorder sub-determinant of matrix P. The notation

Pij kl is alsousedin appendix A.
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In equation (3.33), the summation rules1 apply for indicesappearing two times like m and

n. In this case,the summedpairs of indices are to be only distinct pairs of distinct indices2

(by convention, m < n, o < p,. . . , s < t, u < v). It follows from equation (3.33) that:

r11(z0)r22(z0) � r12(z0)r21(z0) = r (z0)

�
�
�
�
�

1 2

1 2

�
�
�
�
�

= t �
n 1
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�
�

1 2

a b
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�
�
�
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�
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�
�
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�
�
: : : g1
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1 2

�
�
�
�
�

= 0 (3.34)

With the condition on indices,the factor t �
n 1

�
�
�
�
�

1 2

a b

�
�
�
�
�

has6 components: 12, 13, 14, 23, 24 and

34 (Dunkin 1965). On the other hand, gn

�
�
�
�
�

a b

c d

�
�
�
�
�

has6x6 components. Hence,like in the Love

case,for a given frequency( !
2� ), only a few discretevaluesare possiblefor the velocity of the

Rayleigh surfacewave (VR =
h

!
k(! )

i

i
), corresponding to the dispersioncurvesof variousmodes.

The dispersioncurve is found by seekingthe roots of r (z0)

�
�
�
�
�

1 2

1 2

�
�
�
�
�
.

Eigenfunctions

As for the Love case,the functions r 1 to r �
2 de�ned in equation (3.25) are the eigenfunctions

for Rayleigh waves. From equation (3.32), it is obvious that

r1(z0)
r2(z0)

= �
r12(z0)
r11(z0)

(3.35)

The ratio of eigenfunctionsr 1 and r2 is hence �xed to a constant that depends upon the

values of the elements of matrix R(z0), itself, a function of the mode and the frequency for

which the Rayleigh velocity has been calculated. The motion-stressvector at depth z0 can

be de�ned numerically, normalizing either r 1 or r2 to any arbitrary value. The computation

of the eigenfunctionsat any arbitrary depth is done in the sameway as for the Love case.

The elements of G are not given here,but it can calculatedby an eigenvalue decomposition of

matrix A (equations(3.27) and (3.1)).

The eigenfunctionsat the surfaceare useful for computing the ellipticit y of Rayleigh waves

(section 3.2). It will be shown how to calculate r 12 (z0)
r 11 (z0) without the completeknowledgeof the

elements of matrix R(z0).

Implemen tation

The detailed expressionsof the determinants of R(zi ) are given in appendix A. The six-

component vector R(zn� 2) is obtained by combining the matrix Gn� 1 and the vector R(zn� 1)

1The summation of indices take place when one or more indices appear two times inside a product. For
instance, the formula xk i yil is in fact equal to

P max
i = min xk i yil

2In the pair (m; n) m is always di�eren t from n, and pairs (m; n) and (n; m) are strictly equivalent
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in the sameway as equations(A.12) for Gn and T � 1
n . The computation is done for each layer

for bottom to top up to the �rst one at the free surface. As T1214 and T1223 (appendix A) are

equal (from equation (3.31)), it is obvious that R1223(zn� 1) = R1214(zn� 1). From bottom to

top, the two components are always equal (equation (3.30)) and we can reducethe number of

components to �v e rather than six. Also, R1214(zn� 1) likeT1214 is the only imaginary component

and this feature is preserved acrossthe layeredmedium. Thus, the 6 components of t � 1
n reduce

to 5 and the matrix gn to 5x5 components.

To speed up the computation, we slightly modi�ed the Dunkin's original formulation to

reducethe total number of operations, preferring subtractions, additions and multiplications

to divisions. The sinh and cosh functions are calculated in the sameway as for Love case,

including the real and imaginary cases(equation (3.22), section3.1.3). A frequencyfactor of

! 2 (equation (A.12), appendix A) hasbeenintroducedin R1212 to avoid unscaledvector at low

frequencies.For each layer, valuesof sub-determinants are scaledto �t in the range between

� 105 to 105 to avoid over
ow when propagating acrossa stack with many layers. Compared

to Herrmann's formulation (1994) in the sameconditions (not in its original Fortran code but

already translated in C++), this implementation reducesby 25%the time consumption.
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Figure 3.3: Values taken by R1212(z0) at di�eren t couples(frequency, velocity) for a two-layer model.

In �gure 3.3, the valuestaken by R1212(z0) for all couples(! ; k) are shown in the caseof

a two-layer model: 1350and 250 m/s for Vp and Vs, respectively in the �rst 25 m thick layer,
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and 2000and 1000m/s in the half-space.

3.1.5 A quic k ro ot search

For a given ! , the roots of either l21(z0) (Love) or R1212(z0) (Rayleigh) are searched along the

velocity axis. The problem is not to �nd someroots of the function but all roots in a correct

order to clearly identify the modal curves. Inside the sourcecode, the search is performedon

the slownessaxis to reducethe number of time consumingdivisionsand alsoto take advantage

of the better separationof modesat high frequencyin the slownessdomain comparedto the

usual velocity domain (�gure 3.3). For the sake of clarity, the velocity is usedin this section.

Ph ysical search in terv al

Typical dispersion curves are shown on �gure 3.4 with their lower and higher velocity limits.

All real curves have a velocity less than or equal to the maximum S-wave velocity of the
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Figure 3.4: Velocity limits of Love (a) and Rayleigh (b) dispersion curves. Fundamental mode and the two
�rst higher modes are represented with plain, dashed,dotted lines respectively. The horizontal lines are the
physical velocity limits.

model (Vs;max ). The minimum possiblevelocity is not the samefor Love and Rayleigh cases.

For Love waves, all modes tend to a commonvelocity at very high frequencies,equal to the

minimum S-wave velocity of the model (Vs;min ). At high frequency, deeplayers are ignored by

the surfacewavesbehaviour. For Rayleigh waves,all higher modestend to Vs;min and Vs;max at

high and low frequenciesrespectively. For the fundamental mode, the minimum (Vr ;min ) and

maximum (Vr ;max ) velocities at high and low frequenciesareslightly lessthan Vs;min and Vs;max ,

respectively. Vr ;min and Vr ;max are equal to the Rayleigh velocity observed for a homogeneous
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half-spacewith the velocity of the �rst layer and the bottom half space,respectively. In this

latter case,equations(3.31) and (3.32) simplify to

(
1

V 2
s

� 2
1

V 2
r

)2 = 4
1
Vr

s

(1 �
1

V 2
p

)(1 �
1

V 2
s

) (3.36)

whereVs is the velocity of S-waves,Vp is the velocity of P-waves,and Vr is the unknown velocity

of Rayleigh waves. Equation (3.36) shows that the velocity of Rayleigh waves is constant for

all frequencies,and henceno dispersion takes place. Vr ;max for Rayleigh dispersion curves

(fundamental mode) is thus calculated by solving equation (3.36) with Vs and Vp being the

slownessesof the layer with the minimum Vs. A few Newton-Raphson(Press et al. 1992)

iterations are necessaryto obtain Vr ;min and Vr ;max .

Brac keting the ro ot candidates

The roots are searched starting from the highest to the lowest frequency within the range

de�ned by the user. The method is illustrated in �gure 3.5. The grey curves correspond to

the samedispersioncurvesas in �gure 3.3. In this section,the Rayleigh caseis discussed,but

the samemethod appliesto Love's caseaswell, by replacingVr ;min by Vs;min , and R1212(z0) by

l21(z0). f 1 is the highest frequencyof the user range and f 2 is the secondhighest frequency.

The fundamental and the �rst two higher modes are represented. The plus and minus signs

represent the polarity of function R1212(z0). The polarity below the fundamental curve (initial

polarity) is computed for Vr ;max

1:05 and at low frequency( 1
2� Hz). The minimum limit is divided

by 1.05 to be sure that the fundamental mode is not missed. The polarity alternates when

crossinga modal curve.

The �rst root with the minimum velocity, that corresponds to the fundamental mode at

the highest frequency(f 1), is bracketed by increasingthe velocity from Vr ;max

1:05 with an adaptive

step until �nding a sign change. It always exists as the fundamental mode is present for all

frequencies(grey dots and black dots when a root is found). The search step is calculated by

multiplying the lower limit of the current interval by a constant step ratio. Either for Love

and Rayleigh, half the di�erence betweenVs;min and Vr ;min is taken asa referenceto adjust the

initial velocity step. Hence,the step ratio is de�ned by

Vs;min � Vr ;min

2 Vs;min
(3.37)

This method is particularly justi�ed in this casebecausethe ratio of the minimum andmaximum

velocities of the admissiblerangeis usually around 4 or 5. The step ratio is eventually reduced

and the precision is increased,if mode jumping is detected (section 3.1.6). Once a root has

beenbracketed, its upper and lower boundsare re�ned down to the current precisionusing the

algorithm described in the next paragraph. The higher bound of the re�ned interval is kept as

the calculatedcurve. The modal velocity is then computed for the next frequencysamplef 2.

The starting velocity for the newsearch is the velocity calculatedfor the precedingfrequency
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Figure 3.5: Method for bracketing roots.

sample, f 1 in this case(the higher bound is taken). The search direction dependsupon the

polarity observed at f 2 and at the starting velocity. If it is the sameas the initial polarity, the

true dispersionis located at a higher velocity (as in �gure 3.5) and the root is re�ned after the

sametype of search as in f 1. In the other case,the dispersion has a non-monotonousshape,

characteristic of models with low velocity zones(section 3.1.6). No search is made becausea

polarity changehasalreadybeenfound; the root is directly re�ned. The sameprocessis applied

for all frequencysamplesuntil the lowest. A �nal test described in section3.1.6 is performed

on the obtained modal curve. Afterwards, the curve is de�nitiv ely accepted.

For higher modes,the minimum of velocity rangesare reducedto the valuesof the re�ned

higher bounds of the precedingmode. The initial polarity is inverted. The modal curve may

not bede�ned for all frequencysamples.If so,the velocity search stopsat Vs;max . If the polarity

at Vs;max is the sameas the initial polarity, no root existsand the computation of this mode is

stopped. The sametest asfor the fundamental mode is performedbeforede�nitiv ely accepting

the curve.

Re�ning the brac kets

Once bracketed, there are several classical ways of re�ning a root of a non-linear or non-

analytical function. Amongthem, the most robust is the bissection(Presset al. 1992). It always

gives the correct answer if the root is correctly bracketed and if the function is continuous.

However, it is not the quickest way in most of the situations. Like Herrmann (1994), we

implemented an algorithm that mixes the bissectionmethod and a Lagrangepolynomial �t.

The Lagrangepolynomial is bestconstructedusingthe iterativ eNeville's algorithm (Presset al.
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1992). Correctionshave beenbrought to Herrmann'salgorithm to achieve better performances.
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Figure 3.6: Method for re�ning roots. (a) to (f ) are successive steps of re�nement. The thick plain curve is
the unknown theoretical curve. The thin plain line is the polynomial �t from already calculated samples(black
dots). The grey dot is the new root computed from polynomial �t. The grey rectanglesshow the zoom area of
the next step.

Practically, from the two initial bracketing values(V1 and V2), a third point V3 is calculated

by bissection. R1 to R3 are the valuesof R1212(z0) for V1 to V3, respectively. According to the

sign of R3, either V1 or V2 is replacedby the value V3, swapping them eventually afterwards to

keep V1 < V2. It is the state described by �gure 3.6(a), where V1 and V2 are represented by

black dots. A Lagrangepolynomial is constructed on those two samples(a line in this case),

shown by the thin plain line. From the intersectionof the polynomial with axis y = 0, a newV3

is deduced,it is shifted by a tenth of V2 � V1 towards the limit with the highestR1212 value,and

R3 is re-calculated. If R3 is located betweenR1 and R2, the function is bijective inside [V1; V2]

and henceinvertible betweenV1 and V2. This is not the casein �gure 3.6(b). Consequently, the

algorithm returns to bissectionto generatea new sampleV3 from the current V1 and V2. As in

the �rst step,either V1 or V2 is replacedby the valueV3 (new brackets areshown in �gure 3.6(c)

by black dots). New samples(grey dots) are generatedfrom the polynomial �t and integrated

into it. In �gures 3.6(d) to 3.6(f), the degreeincreasesat each step asnew samplesare added.

To e�cien tly calculate the root of a Lagrange polynomial P(V), the axis X and Y are

swapped during its construction. The coordinates of the samplesare swapped so that P 0(R)

�ts (R1; V1), (R2; V2), . . . . The current estimate for the root is V = P 0(0). If R1 and R2 di�er

from a factor 10 or more, the Neville's algorithm may fail and it is better to return to the

bissectionuntil reducing the ratio. To avoid a quick return to bissection,the newly generated

point has to be on the side of the true root whereeither R1 or R2 is maximum. For doing so,
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the calculated value is consideredas the true root, and it is shifted by a tenth of the current

bracket interval towards the boundary having the highestvalue for the function. In most cases,

when the true function is locally weakly non-linear, the limit with the highest function value

is replacedby the new shifted estimate of the root at the next iteration, keeping the order

of magnitude of R1 and R2 in the samerange. This is the minor modi�cation we brought to

Herrmann's algorithm (1994), but it has a major in
uence over the global performances,as

the full power of the polynomial �t is used. The maximum degreeof the polynomial is set

to 19, becauseits coe�cien ts are stored in a static vector of limited length for e�ciency . In

a contradictory way, �nding the perfect root 3 is a problem becausethe inferior and superior

brackets are lost as no sign can indicate on which side of the true root a new sample is. It

may ruin the root search for the next modes. This caseis checked, and the computation of

the function is redoneat a slightly distinct value (minus one tenth of the current bracketed

interval).

With this method, only 4 to 6 iterations are generally necessaryto obtain a 10� 7 relative

precision. One iteration corresponds to one evaluation of the numerical function R1212(z0). In

the original codewritten by Herrmann(1994),the degreeof the polynomial never increasesover

2 or 3, quickly returning to bissection. More than 10 iterations are necessaryto achieve the

sameprecision. Our code rarely returns to bissection,increasingthe degreeof the polynomial

at each iteration. Togetherwith the removal of all �le Input/Output, it has beenpossibleto

drop the time consumptionby a factor 5 to 6.

3.1.6 Mo de jumping control

During a direct search inversion, the number of calculateddispersioncurves is so huge that it

is impossibleto manually control the individual results of each model. That is the reasonwhy

an automatic quality control hasbeendeveloped.

Figure 3.2 shows that modal curves might be located very closeto each other at certain

frequencies: at high frequency for Love case,or at osculation points for Rayleigh case(e.g.

Forbriger 2003a). At thesepoints, the distancebetweentwo modesmight be smaller than the

default step calculated above. During the search, crossingtwo modesin one step results in a

constant polarity and hencemodesaresought at a highervelocity, ignoring two modes. Another

kind of mode jumping may occur for models with low velocity zones(LVZ). For thosemodels

only, the dispersioncurve may have a non-monotonousshape with a leastonemaximum (�gure

3.7. When moving from frequencyf 1 to f 2 in �gure 3.5, the horizontal line may crossseveral

modesonly if higher modeshave alsoa non-monotonousshape at the consideredfrequency.

Two kinds of tests (detailed in the next two paragraphs)are performed during the com-

putations of dispersion curve to detect any mode jumping. In caseof error, the computation

is always restarted for the current modal curve to the highest frequency of the user range.

Meanwhile, the search step and the relative precision are both divided by a factor 10. At

3In the computer sense,the perfect root is obtained when the valuesof the function are lessthen the internal
precision.



3.1. DISPERSION CURVES 45

this stage,optimization is not of concernand the step is chosensmall enoughto avoid mode

jumping rather than decreasingslowly until �nding the maximum neededsize. Four restarts

are allowed beforestating that the dispersion cannot be calculated for the given model. The

default precisionand step ratio are resetafter each acceptanceof a modal curve.

Non-monotonous shape

If no LVZ is detected in the model, any extrema of the dispersion curve is rejected and com-

putation is restarted. On the other hand, if a LVZ takes place in the model (�gure 3.7),
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Figure 3.7: Dispersioncurveof a model with a LVZ.

the dispersioncurve may show oneor more ex-

trema. The validit y of the precedingsampleis

checked by searching a hypothetical additional

modeat a lower velocity (in the reversedirection

of the initial search with the samestep). If any

additional mode is found, it proves that mode

jumping occurredand computation is restarted.

For those models with LVZ, the computation

of dispersion curves may fail for all step sizes,

even if the number of admitted restarts werein-

�nite. Hence,someLVZs are tolerated in this

implementation but not all of them. For some

of them, the correct determination of the modal

curve may require a denserfrequencysampling

(user input). In this latter case,a more re�ned technique should try to calculate the root at

an intermediate frequency.

End-p oin t check

For the fundamental mode, the velocity hasto be lower than Vs;max , even for Love waves. When

it is equal, it generallyresults from a mode jumping taking placeat a higher frequency. For the

higher modes,the Vs;max value is obtained when reaching the frequencythreshold below which

the mode doesnot exist. For all modes,the last point (at the lowest frequency)is checked by

searching a hypothetical additional mode at a lower velocity (in the reversedirection of the

initial search with the samestep). If any root is encountered betweenthe higher bound of the

precedingmode and the lower bound of the last sampleof the current mode, it meansthat

at least one mode is missing. Unlike Herrmann's code, the root search and root re�nement

are always preservingthe upper and lower limits of the roots. In this way, there is absolutely

no risk to confusethe search result with the previously calculatedmodes. This check assumes

that the distance between modes is changing along the frequencyaxis. When there are two

osculation points with one located at the lowest frequencyof the user range, this algorithm

may however fail to detect any mode jumping. For the Rayleigh fundamental mode, there is

absolutelynot risk of such phenomena,if the userfrequencyrangeextendsto a su�cien tly low
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frequency, for instance,below the threshold frequencyof the �rst higher mode.

3.1.7 Mis�t

The mis�t is a value that represents the distancebetweena calculateddispersioncurve and an

experimental curve. If the data curve is a�ected by an uncertainty estimate, the mis�t is given

by:

misf it =

vu
u
t

nFX

i =1

(xdi � xci )2

� 2
i nF

(3.38)

where xdi is the velocity of data curve at frequencyf i , xci is the velocity of calculated curve

at frequencyf i , � i is the uncertainty of the frequencysamplesconsidered,nF is the number of

frequencysamplesconsidered.If no uncertainty is provided, � i is replacedby xdi in equation

(3.38).

When various modesare observed and clearly identi�ed, the inversionof all modesrequires

a multi-modal mis�t. The sum in equation (3.38) is extended to all samplesavailable for

all modes. For higher modes, the curves may be de�ned over a restricted frequency range.

Hence,it is not always possibleto calculatea theoretical dispersioncurve for someexperimental

samples. If the calculated one-dimensionalmodel is closeto the real one, the valid rangesof

higher modesare similar and the number of experimental samplesis equal to the number of

calculatedsamples.To forceboth curvesto be de�ned in the samefrequencyrange,the mis�t

is multiplied by a factor equal to

misf it = misf it � (1 + nexper imental � ncalculated) (3.39)

nexper imental being the number of available samplesfor each curve (nexper imental � ncalculated).

3.1.8 Sensitivit y of the disp ersion against layer parameters

Four parameterscharacterizeeach layer: the thickness,Vp, Vs and the density (� ). Vs is the

most in
uen t parameter (e.g. Xia et al. 2003). It varies from 0 in 
uids to 3500 m/s in

earth super�cial crust (Reynolds 1997). Vp doesnot in
uence Love-dispersion curvesand has

sometimesa non-negligible in
uence on Rayleigh-dispersion curve (seebelow). The natural

valuesare between100 to 7000m/s (Reynolds 1997). Vs and Vp are linked by Poisson'sratio

de�ned by

� =
2V 2

s � V 2
p

2(V 2
s � V 2

p )
(3.40)

Poisson'sratio is always between0 and 0.5 (vanishingVs). Commongeologicmaterials have a

Poisson'sratio around 0.25. It may be greater for unconsolidatedor loosesediments, reaching

0.49 in soft clays. 0.05can be measuredfor Very hard rocks (Reynolds1997). The density (� )

hasalmost no e�ect on the dispersionwithin the usual geologicvaluesfrom 1 to 3 t/m 3.
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The e�ects of theseparameterson the dispersioncurve are detailed in the next sectionsfor

a two-layer, a three-layer and n-layer case.The naming convention is the sameas in �gure 3.1.

Tw o-layer model

Figures3.8 and 3.9 show the in
uence of Vs0 in the caseof a �xed Vp pro�le and of a constant

Poisson'sratio, respectively. Love and Rayleigh dispersion curves (Vr (f )) are plotted with

plain and dotted lines, respectively. The modelsand their corresponding dispersioncurvesare

represented by distinct grey levels. In �gure 3.8, only Vs0 is changing from 100 to 1900m/s.

Poisson'sratio variesas well becauseVp0 is held constant (written on the right). In �gure 3.9,

only the variations of Vs0 are represented but Vp0 is alsochanging for all models to keepa con-

stant Poisson'sratio being0, 0.25and 0.45in �gure (a) to (c), respectively. Love and Rayleigh

curves are monotonouslydecreasingwith at least one in
exion point. The �rst derivative of

Love curveshasalways oneminimum. For Rayleigh curves,two minima and a maximum may

exist in the �rst derivative, especially for moderate to high Poisson'sratios. Vs of the �rst layer

changesthe limit of the curvesat high frequency. The limit at low frequencyis not in
uenced by

the properties of the super�cial layer. The lower is Poisson'sratio and the higher is Vs0, bigger

is the di�erence betweenLove and Rayleigh dispersioncurvesat high frequency, in accordance

with equation (3.36) for a half-space.

0.2 0.4 0.60.81 2 4 6 8 10 20 40
Frequency (Hz)

400

800

1200

1600

2000

V
el

oc
ity

(m
/s

)

0 2000
0

20

40

60

VpVs

Figure 3.8: In
uence of Vs0 with a constant Vp pro�le. Rayleigh and Love fundamental modesare represented
by plain and dotted lines, respectively. The valueson the right are the Poisson'sratios corresponding to Rayleigh
curves. Vs0 varies from 100 to 1900m/s. Vp0 is 2687m/s. Vs1 is 2000m/s. Poisson'sratio is 0.25 below 50 m.
The density is 2 t/m 3 at all depths.

In the Rayleigh case,the in
uence of Vp0 is checked in �gure 3.10for two distinct Vs0 values

(200 and 1000 m/s). In both cases,Poisson'sratio varies from 0 (dark grey) to 0.45 (light

grey). Vp pro�les are shown in the small �gure on the left. For case(a), it variesbetween280

and 660m/s, and between1400and 3300m/s for case(b). Vp hasapparently an impact on the

dispersioncurve whenPoisson'sratio is lessthan a threshold (around 0.27for case(a) and 0.37
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Figure 3.9: In
uence of
Vs0 with a constant Pois-
son's ratio: (a) � =0, (b)
� =0.25, and (c) � =0.45.
Rayleigh and Love funda-
mental modes are repre-
sented by plain and dotted
lines, respectively. Vs0 varies
from 100 to 1900m/s. Vs1 is
2000 m/s. Poisson'sratio is
0.25 below 50 m. The den-
sity is 2 t/m 3 at all depths.
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Figure 3.10: In
uence of Vp0 on the Rayleigh dispersion curve for two cases: (a) Vs0=200 m/s, and (b)
Vs0=1000 m/s. Poisson'sratio varies from 0 (dark) to 0.45 (light). Hence,Vp0 varies from 283 to 663m/s (case
(a)), and from 1414to 3316m/s (case(b)). Vs1 is 2000m/s. Poisson'sratio is 0.25 below 50 m. The density is
2 t/m 3 at all depths.
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Figure 3.11: In
uence of z1. Rayleigh and Love fundamental modesare represented by plain and dotted lines,
respectively. Vs0 is 200 m/s. Vs1 is 2000m/s. Poisson'sratio is 0.25 at all depths. The density is 2 t/m 3 at all
depths.
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for case(b)) which dependsupon Vs0. Above this threshold, Vp loosesits in
uence. For case

(a), only three curvesarewell individualized, thosecorresponding to Vp lessthan 400m/s. This

conditional dependencyexplains that, in most cases,only a minimum of Vp can be retrieved

from the inversionof dispersioncurves(section 4.2).
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Figure 3.12: In
uence of z1 for Vs pro�le. Rayleigh and Love fundamental modes are represented by plain
and dotted lines, respectively. Vs0 is 200 m/s. Vs1 is 2000m/s. Poisson'sratio is (a) 0.00 and (b) 0.25 above
50 m and below 75 m. The density is 2 t/m 3 at all depths. The results for a Poisson'sratio of 0.45 are quite
similar to those of 0.25 (not shown).

In �gure 3.11, the in
uence of the thicknessof the �rst layer is tested. Vs and Vp pro�les

are both modi�ed by this parameter. Love and Rayleigh dispersion curves are translated in

the sameway when the depth is reduced. As Vp or Poisson'sratio only changesthe shape of

Rayleigh curves,it is likely that the e�ects of the thicknessare mainly due to the modi�cation

of Vs pro�le rather than Vp pro�le. This is tested hereafterwith �gures 3.12and 3.13.

In �gure 3.12,Vp pro�le is held constant wherez1 of Vs pro�le variesfrom 50 to 75 m. The

sametranslation as in the generalcaseis observed. For low Poisson'sratios, the velocity at

1.25Hz is not a�ected by the changing depth. The third of the wavelength, a commonrule of

the thumb in surfacewave analysisto map frequencyscalesto depth scales(Tokimatsu 1995),

is about 95 m at 1.25Hz.

In �gure 3.13, Vs pro�le is held constant. Rayleigh dispersion curve is nearly not in
u-

encedexcept for low Poisson'sratio. For someother caseswith higher Poisson'sratios (not

shown here), the only a�ected part of the dispersion is the curvature closeto the maximum

Rayleigh velocity. Uncoupling depth limits of Vs and Vp is one of the perspectives o�ered by

the conditional neighbourhood algorithm (section 2.4).

The density of the �rst layer has a low in
uence on the dispersion curves (either Love or

Rayleigh) as shown by �gure 3.14. The density is changedfrom 1 to 3 t/m 3 with Vs0 being

200 and 1000m/s, case(a) and (b), respectively. The e�ects clearly depend upon Vs0. Vs1 is

the samefor both cases,hencethe velocity contrast is alsomodi�ed between(a) and (b). The
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Figure 3.13: In
uence of z1 for Vp pro�le. Rayleigh and Love fundamental modes are represented by plain
and dotted lines, respectively. Vs0 is 200 m/s. Vs1 is 2000m/s. Poisson'sratio is (a) 0.00 and (b) 0.25 above
25 m and below 50 m. The density is 2 t/m 3 at all depths. The results for a Poisson'sratio of 0.45 are quite
similar to those of 0.25 (not shown).

e�ect of the density is only visible for case(b). In case(a), the density hasalmost no in
uence

except around 1 Hz. Only the shape is modi�ed, not the low and high frequencylimits. The

consideredinterval (from 1 to 3 t/m 3) is probably larger than usualprior uncertainty on density.

Hence,this parameteris generally�xed to a constant valueduring inversionsof dispersioncurve

(section 4.2).

The samesensitivity analysis is carried out for the parametersof the bottom half-space.

The in
uence of Vs1 is estimated in �gure 3.15. Vp pro�le is held constant. Vs1 and Poisson's

ratio in the bottom half spacevary from 300 to 2000m/s, and from 0.5 to 0, respectively. It

acts exactly like Vs0 replacing high by low frequenciesand vice-versa. The di�erence between

Love and Rayleigh curvesat low frequencyincreaseslike Vs1, and it is maximum for Poisson's

ratio equal to 0. Above 2 Hz, no e�ect can be observed. Poisson'sratio has a little e�ect on

the shape of the dispersionbetweenthe low and high frequencylimits. The magnitude of the

e�ect is much smaller than the e�ect of super�cial Poisson'sratio.

To corroborate this observation, the e�ect of Vp1 alone is measuredin �gure 3.16. Vs1 is

�xed to a constant value equal to 500 m/s and 2000m/s, for cases(a) and (b), respectively.

In a similar way as for Vp0, all curvesappear to be mergedtogether for all Vp1 greater than a

particular threshold (around 4000m/s for case(b)).

Finally, the in
uence of the density is shown in �gure 3.17. Two casesare chosenwith Vs1

�xed to 500 and 2000m/s, noted by (a) and (b), respectively. The density varies from 1 to

3 t/m 3. Comparing�gures 3.14and 3.17,the densitiesof the �rst layer and of the half-spacedo

not a�ect the dispersionin the sameway. The last onereducesthe apparent velocity when the

density decreases.Like the density of the super�cial layer, the interval of variation is probably

larger than the prior uncertainties. Hence,the e�ects of � are generallynegligible.
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Figure 3.14: In
uence of � 0 for two cases: (a) Vs0=200 m/s, and (b) Vs0=1000 m/s. Rayleigh and Love
fundamental modesare represented by plain and dotted lines, respectively. � 0 varies from 1 to 3 t/m 3. Vs1 is
2000m/s. Poisson'sratio is 0.25 at all depths.
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Figure 3.15: In
uence of Vs1 with a constant Vp pro�le. Rayleigh and Love fundamental modesare represented
by plain and dotted lines, respectively. The valueson the left are the Poisson'sratios corresponding to Rayleigh
curves. Vs1 varies from 300 to 2000 m/s. Vs0 is 200 m/s. Poisson'sratio is 0.25 above 50 m. The density is
2 t/m 3 at all depths.



3.1. DISPERSION CURVES 53

0.2 0.4 0.60.81 2 4 6 8 10 20 40
Frequency (Hz)

400

800

1200

1600

2000

V
el

oc
ity

(m
/s

)

(a)

(b) 0 5000
0

20

40

60

Vp

Figure 3.16: In
uence of Vp1 on the Rayleigh dispersion curve for two cases: (a) Vs1=500 m/s, and (b)
Vs1=2000 m/s. Poisson'sratio varies from 0 (dark) to 0.45(light). Vs0 is 200m/s. Poisson'sratio is 0.25above
50 m. The density is 2 t/m 3 at all depths.
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Figure 3.17: In
uence of � 1 for two cases: (a) Vs1=500 m/s, and (b) Vs1=2000 m/s. Rayleigh and Love
fundamental modesare represented by plain and dotted lines, respectively. � 1 varies from 1 to 3 t/m 3. Vs0 is
200 m/s. Poisson'sratio is 0.25 at all depths.
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Three-la yer model

With this geometry, the properties of the �rst and the last layer (half-space)have the same

e�ect as for the two-layer case. The in
uence of the intermediate layer characteristics (Vs1,

Vp1, and � 1) is investigatedhere. First, a large variation range is tested for Vs1, between100

to 2500m/s (�gure 3.18). This variation inducesseveral typesof models: a low velocity zone

(Vs1 < Vs0 = 200m/s), a normal increaseof the velocity (Vs0 < Vs1 < Vs2), and a High Velocity

Zone (Vs1 > Vs2 = 2000m/s). Vs0 is �xed to 500 m/s. Vs2 is set to 2000m/s. Vp pro�les are

calculatedwith a Poisson'sratio of 0.25.

0.2 0.4 0.60.81 2 4 6 8 10 20 40
Frequency (Hz)

400

800

1200

1600

2000

V
el

oc
ity

(m
/s

)

0 2000
0

20

40

60

Vs

Figure 3.18: In
uence of Vs1 with a constant Poisson'sratio. Rayleigh and Love fundamental modesare rep-
resented by plain and dotted lines, respectively. Vs1 varies from 100to 2500m/s. Vs0=500 m/s. Vs2=2000 m/s.
Poisson'sratio is 0.25and density is 2 t/m 3 at all depths. (b) Two-layer model (Vs pro�le) and the corresponding
dispersion curve.

1. Low velocity zone

At high frequency, Love and Rayleigh waveshave approximately the samevelocity, which

is equalto the minimum Vs of the model (Vs1 in this case).Love curvesaremonotonously

decreasing.On the contrary, Rayleigh curvespresent a small minimum. At low frequency,

the e�ects of the low velocity zonedisappear.

2. Normal increaseof the velocity

The generalshape of the dispersion curves is very comparablewith the onesfor a two-

layer model (�gure 3.9(b), dispersioncurvesfor the model with Vs0=500 m/s). The only

di�erence is the higher velocity between6 and 30 Hz which follows the velocity increase

of the secondlayer Vs1.

3. High velocity zone

At high frequency, the Rayleigh curvesare similar to the curves that are obtained with

a two-layer model with a contrast at 10 m (�gure 3.19). At low frequency, the Rayleigh
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curves tend to Vr ;max like the other classesof models. For Love, the algorithm ends

with an error message.Exceptionally for a fundamental mode, the curve doesnot exist

at all frequencies(available above 10 Hz, or for wavelengths lessthan 200 m). At low

frequency, the �rst layer (10 m thick) is not "seen" by the propagating waves with a

wavelengthgreaterthan 200m. The model is equivalent to a high velocity layer overlying

a half spacewhere no real solution exists for the Love surfacewaves (Aki and Richards

2002,equation 7.6 calculatedwith complexnumbers).
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Figure 3.19: The light grey model in �gure 3.18

is the sameas in this �gure between0 and 50 m.

(a) Vs pro�le. (b) The calculated dispersion for

the two-layer model. The dispersion curves are

also similar at high frequency.

The in
uence of Vp1 in the intermediate layer is

tested with the samemodel as in �gure 3.10. The

sediment layer is split in two in the sameway as in

�gure 3.18 (10 and 40 m). Vp1 in the intermediate

layer of 40 m is changed, keeping other parame-

ters constant. The results are shown in �gure 3.20

with two casesfor Vs between 0 and 50 m: (a)

Vs0 = Vs1=200 m/s, and (b) Vs0 = Vs1=1000 m/s.

Figures 3.20 and 3.10 are quite similar, proving

that intermediate valuesVp1 also in
uence moder-

ately the dispersion curve. At high frequency, in

�gure 3.20(b), all curvestend to sameRayleigh ve-

locity. On the contrary, in �gure 3.10(b), for low

Vp0 values,a signi�cant in
uence is observed above

10 Hz. This di�erence is entirely due to the velocity valuesbetween0 and 10 m, which control

the Rayleigh velocity at very high frequency.
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Figure 3.20: In
uence of Vp1 on the Rayleigh dispersion curve for two cases:(a) Vs0 = Vs1=200 m/s, and (b)
Vs0 = Vs1=1000 m/s. Poisson'sratio varies from 0 (dark) to 0.45 (light). Vs2=2000 m/s. Poisson'sratio is 0.25
in �rst and bottom half-space. The density is 2 t/m 3 at all depths.
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3.1.9 Conclusion

An e�cien t and safealgorithm for calculating dispersion curveshas beendeveloped. On cur-

rently available personalcomputers(e.g. with a processorAthlon 2.2 GHz), the time neededto

calculate onesampleis about 5 microsecondsfor a two-layer model. If the dispersioncurve of

the fundamental mode is sampledwith 30 points, more than 6500modelscan be calculated in

only onesecond.It hasbeenimplemented in a commandline program (os_forward ) and in an

inversion tool (os_na). This algorithm is also exploited to calculate other spectral properties

of the ground model like the ellipticit y and the auto-correlation, detailed in the next sections.

3.2 Ellipticit y

The H/V Method is a common tool used for site-e�ect investigations (Nogoshi and Igarashi

1970,Nakamura 1989,Bard 1998). The horizontal (H) and vertical (V) components are simul-

taneously recordedat one single point. The ratio of H over V generallyexhibits a peak, that

corresponds more or lessto the fundamental frequencyof the site (f 0 = Vs
4h , Bonnefoy 2004).

However, the ambient wave�eld is composedof unknown parts of body and surfacewaves. In

the �rst case,the ratio is mainly in
uenced by SH resonancein the super�cial layers. On

the other hand, if Rayleigh surfacewaves predominate, the theoretical ellipticit y dictates the

observed curves (Nogoshi and Igarashi 1970,F•ah et al. 2001,F•ah et al. 2003,Scherbaum et

al. 2003). Real data peaksusually �t the frequencyof the theoretical curves but the ampli-

tude is rarely stableand reliable. Malischewskyand Scherbaum(2004)developed an analytical

formulation for two-layer models. They plotted the di�erences of the peak frequencybetween

the two aforementioned assumptionsversusthe magnitude of the velocity contrast. At inter-

mediate and low contrasts (below a factor of 4 betweenVs0 and Vs1), a drastic gap may exist

betweenthe two interpretations. In this case,Bonnefoy (2004) showed that the observed H/V

peak better �ts with the extrema of the SH transfer function.

H/V spectrum contains valuable information about the underlying structure, especially a

particular relationship between Vs of the sediments and their thickness(Boore and Toks•oz

1969,Scherbaumet al. 2003). Becausethe absoluteamplitude of the curve cannot be directly

comparedto the amplitude of the SH transfer function or the ellipticit y, only the frequency

of the peak is consideredhere. Somepreliminary tests showed that using ellipticit y amplitude

o�ers a very good constraint even on Vp pro�le. However, wrong assumptionson the amplitude

also lead to completely biasedresults. Nevertheless,F•ah et al. (2003) invert the amplitude

betweenthe peakand the trough by meansof assumptionsabout the energypartition between

Love, Rayleigh and body waves. This alternative has been discardedduring our work. The

next sectionsfocusedon how to calculatethe ellipticit y of Rayleigh wavesand how to calculate

the exact frequenciesof the peaks.
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3.2.1 Computation

The ellipticit y is de�ned by the ratio r 1 (z0)
r 2 (z0) where r1(z0) and r2(z0) are the factors appearing

in equation (3.24). This ratio can be calculated from the terms of matrix R(z0) as shown by

equation (3.35). As detailed in section 3.1.4, the matrix R(z) is never completely calculated

during the dispersion curve computation and values of r 12(z0) and r11(z0) are not available.

However, it is possible to calculate the ratio r 12 (z0)
r 11 (z0) from sub-determinants r (z0)

�
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�
�
�

1 2

a b

�
�
�
�
�

as

shown herebelow.

From the computation of the dispersion curve we know that r (z0)
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1 2
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� 0. The ap-

proximation comesfrom the fact that the dispersion curve is solved numerically with a �nite

precision. Here, the problem is assumedto be perfectly solved, and the approximation is

dropped in the following equations. For simplicity, the z0 dependencyis alsodropped
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is imaginary as demonstratedby equation (3.35). We

multiplied by i as a real value is internally computed. The solution of the systemof equations

(3.41) is
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(3.42)

Thus, for elastic waves in a layered model, this ratio is an imaginary number either positive

(prograde) or negative (retrograde). Theseterms comefrom the analogybetweena rolling ball

and the particle motion

For a half space,using equation (3.31), the classicalformula is obtained (Tokimatsu 1995):

r1(z0)
r2(z0)

= i
k(ln � 2knhn )
hn (ln � 2k2

= � i
2knk

ln
= � 2i

p
1 � (Vr =Vs)2

2 � (Vr =Vs)2
(3.43)

It is always a negative imaginary number and r 1(z0) and r2(z0) are out of phaseby 90� with

each other. The particle motion at the surfaceis then always retrograde elliptical for a half

space.In general,only the real absoluteamplitude of the ellipticit y is shown on a log-logplot.

Equation (3.42) proves that the ellipticit y can be calculated at a very low cost once the

dispersion has been correctly computed. However, the results are stable and reliable only if
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the dispersion problem (equation (3.34)) is su�cien tly solved. Taking into account the error,

equation (3.42) transforms into

r1(z0)
r2(z0)

= i

r

�
�
�
�
�

1 2

1 4

�
�
�
�
�

r

�
�
�
�
�

1 2

1 3

�
�
�
�
�

+ e
r13(z0)

r11(z0)r
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(3.44)

wheree is the remainder of equation (3.34). Its magnitude is not constant becausethe itera-

tions of the root search algorithm are stopped when the Rayleigh slowness(or the velocity) is

estimatedwith a relative precisionof 10� 7. No test are performedon the absolutevalue of the

remainder. Calculating the error on the ellipticit y value is never donebecausethe total error

dependsupon particular terms of matrix R(z0), not fully computedhere. In most cases,expe-

rience has proved that the problem is su�cien tly solved with a 10� 7 relative precisionon the

dispersioncurve. An exceptionto this rule is shown in the next sectionfor a three-layer model

where a 10� 50 relative precision is necessary. Such computations are possiblewith numbers

having more than 50 signi�cant digits handled by the ARPREC library (Bailey 2004).

In contrast to section3.1.7, the mis�t computation is presented after the sensitivity study

becausea better understandingof the particular shape of the ellipticit y curve is necessaryto

de�ne the mis�t.

3.2.2 Sensitivit y

For a two-layer model the in
uence of Vs0 is shown in �gures 3.21 and 3.22, for a constant Vp

pro�le and a �xed Poisson'sratio, respectively. Hence,the ellipticit y of a two-layer model has

in most casesa root (at 1 Hz for the darkest curve) and a singular point (the maximum at

0.5 Hz for the darkest curve) but it is not always true as demonstratedin �gure 3.22. Even

for a two-layer model, a secondarymaximum may be encountered (at 0.8 and 2.2 Hz in �gure

3.22). There is always onefrequencyband (narrow or large) wherethe ellipticit y is maximum.

When the number of layers increases,several singularities are sometimesobserved but it

is not a constant feature. Figure 3.23 illustrates the variation of the ellipticit y with Vs of

the intermediate layer for a three-layer case. At high frequencyfor the darkest model (with

Vs1 being 100 m/s), usual precision is not su�cien t to achieve a correct computation of the

ellipticit y curve. An experimental algorithm with high precisionarithmetics hasbeendeveloped

for this particular case.A striking feature of the ellipticit y curve of the two darkest modelsof

�gure 3.23,both having a thin hard ground at the surface,is that the ellipticit y ratio at high

frequencydoes not tend to the value predicted by equation (3.43). All other models follow

equation(3.43) at high frequency. Physically, this could be explainedby the trapping of energy

within the intermediate layer which alters the classicaldevelopment of surfacewaves.

Scherbaumet al. (2003)showed for a two-layer model that an inversionof the frequencyof

the main peak can bring valuable information. The generalisationto n layers is not straight-
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Figure 3.21: In
uence of Vs0 with a constant Vp pro�le. Vs0 varies from 100 to 1900 m/s. Vp0 is 2687 m/s
hence,Poisson'sratio varies from 0.499(dark) to 0 (light) like in �gure 3.8. Vs1 is 2000m/s. Poisson'sratio is
0.25 below 50 m. The density is 2 t/m 3 at all depths.
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Figure 3.22: In
uence of Vs0 with a constant Poisson'sratio. Vs0 variesfrom 100to 1900m/s. Vs1 is 2000m/s.
Poisson'sratio is 0.25 and the density is 2 t/m 3 at all depths.
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forward becausethe shape of the ellipticit y curve appears to be very sensitive to the model

parameters. In this context, the determination of the frequencyof the main peak is not uni-

vocal in all caseseven for the simplest models. Also, the inversion of the absoluteamplitude

of the experimental H/V curveswith the Rayleigh fundamental ellipticit y in the generalcase

of n layers may not be reliable. If experimental H/V curvesmay present several peaks,there

is no strong evidenceof a relationship betweenthose real peaksand the various peaksof the

fundamental Rayleigh curve. The ellipticit y of the higher modesor body wave resonancemay

be alsosuspected. Without a clear agreement on the physical model to explain multiple peaks

of the experimental H/V curves,a conservative option, detailed in the next section, is kept to

avoid the introduction biasedprior information.
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Figure 3.23: In
uence of Vs1 with a constant Poisson'sratio. Vs1 varies from 100 to 2500m/s. Vs0=200 m/s.
Vs2=2000 m/s. Poisson'sratio is 0.25 and the density is 2 t/m 3 at all depths.

3.2.3 Mis�t

The mis�t of the ellipticit y is de�ned by

misf it =
(f 0)exper imental � (f 0)calculated

(df 0)exper imental
(3.45)

where f 0 is the frequency of the peak, and (df 0)exper imental is the standard deviation of the

experimental frequency peak. In caseof a joint inversion of the dispersion curve and the

frequencypeak of the ellipticit y, the two mis�ts are combined with the following relation

(misf it )global = (1 � � )(misf it )disper sion + � (misf it )ell ipticity (3.46)

From the implementation point of view, (f 0)calculated is not computedeasily. For each sample

point of the ellipticit y curve, it is necessaryto calculatethe corresponding samplepoints of the
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dispersion curve. Hence,for a �rst estimate of (f 0)calculated, only the user frequencysamples

are used. Calculating the mis�t with this �rst approach leadsto a mis�t which highly depends

upon the arbitrary userfrequencysamples.A more robust algorithm must be able to calculate

the exact frequencyof the peak(down to a reasonableprecision,10� 3 Hz by default). The peak

sampling is re�ned with a three-point scheme. Becauseof the local continuity of the ellipticit y

curve, if ell i is the maximum of the sampledcurve, the true maximum is always locatedbetween

ell i � 1 and ell i +1 . A new sampleis addedbetweenell i � 1 and ell i , or ell i and ell i +1 . The largest

interval is always chosenin order to balancethe samplingrate around the true peak. For each

supplementary sample, the dispersion curve is re-calculated. In the new subsetmade of the

four samples,the absolute maximum is searched and the sameprocessingis performed until

bracketing the true peak with a su�cien t precision.

Additionally , when various peaksare present in the user frequency range, the samepro-

cessingmust be conducted for each relative maximum. A set of several (f 0)calculated;i is thus

obtained. Due to the lack of general agreement on the signi�cation of multiple experimen-

tal H/V peaks,only the main one is kept for inversion. The mis�t value is calculated with

(f 0)calculated;i which givesthe lowest mis�t.

3.3 Spatial auto-correlation

The spatial auto-correlationmethod was�rst proposedby Aki (1957)for horizontally propagat-

ing waves. The caseof pure Rayleigh wavesmeasuredon the vertical components is considered

in this work.

3.3.1 Computation

Assuming a unique phasevelocity per frequency and the stationarity of the noise wave�eld

both in time and space,Aki (1957) demonstratedthat the correlation of the signalsrecorded

at two stations separatedby distancer can be written :

� (r; ! ) = J0

�
! r

c(! )

�
(3.47)

where, � is the azimuthal averageof the correlation ratio � (r; ! ) = � (r ;! )
� (0;! ) , c(! ) is the phase

velocity at angular frequency! , and Jn is the Besselfunction of the order n.

� (r; ! ) =
1
T

Z T

0
v0(t)vr (t)dt

wherev0(t) and vr (t) are the recordedsignalsat two stations separatedby distancer .

Equation (3.47) is valid for the vertical component. Corresponding and more complex

formulae exist for the horizontal components of the surfacewaves(Metaxian 1994,Bettig et al.

2001).

An exampleof a typical station layout is given in �gure 3.24(a)for an array with an aperture
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of about 100 m. The irregular shape is generally induced by natural obstaclesor arti�cial

structures (trees, streets, buildings, . . . ). The end points of the vectors joining all pairs of

stations areplotted on �gure 3.24(b). For such an imperfectarray, it is not possibleto calculate

an azimuthal averagefor onesingledistance. The solution proposedby Bettig et al. (2001) is

to group pairs of stations along rings of �nite thicknesses,as the pairs of grey circlesdrawn in

�gure 3.24(b). Equation (3.47) can be modi�ed to allow the calculation of averageratios over

a ring betweenr 1 and r2.

Figure 3.24: (a) Map of sensorlocations for a typical
array of 10 stations. (b) Azimuth-in ter-distance plot:
each dot represents one couple of stations. The pairs
of grey circles show the limits that may be chosenfor
rings of SPAC computation.
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Equation (3.48) has the samegeneralshape as equation (3.47) and is strictly equal if r 1

tends to r 2. In the following, we will refer to equation (3.47) for the sake of simplicity.

3.3.2 Mis�t

The mis�t is evaluated for all data samples.It is de�ned in the sameway as for the dispersion

curve inversion (equation (3.38) and Wathelet et al. 2004), taking into account the standard

deviation observed for each spatial auto-correlation sample:

misf it =

vu
u
t 1

P nR
k=1 nF k

nRX

i =1

nF iX

j =1

(� dij � � cij )2

� 2
ij

(3.49)

where, � dij is the SPAC ratio of data curvesat frequencyf j and for ring i which is de�ned by

all inter-station distancesbetween r i 1 and r i 2, � cij is the SPAC ratio of calculated curves at

frequencyf j and for ring i , � ij is the observed variancefor the sampleat frequencyf j and for
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ring i , nR is the number of rings considered,and nF i is the number of frequencysamplesfor

ring i .

As for dispersion curves, the implemented algorithm can calculate a mis�t for a set of

modal curvesby including the contributions of all modes in the sum of equation (3.49). The

technique described in section3.1.7is alsousedfor higher modeswith a limited valid frequency

band. Options exist to restrict the mis�t computation to the �rst decreasingpart of the auto-

correlationcurve(argument of Bessel'sfunction lessthan 3.2)and to avoid the part of the curves

closeto 1 (argument of Bessel'sfunction greater than 0.4). In this case,even the fundamental

mode may have a restricted valid frequency interval for which the mis�t is corrected in the

sameway asfor higher modes. However, experiencehasproved that thoseoptions aregenerally

uselessand that the whole frequencyrangecan be usedfor inversion(section 5.2).

3.3.3 Sensitivit y
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Figure 3.25: In
uence of Vs0 with a constant Poisson'sratio. Vs0 variesfrom 100to 1900m/s. Vs1 is 2000m/s.
Poisson'sratio is 0.25 and the density is 2 t/m 3 at all depths.

The caseof �gure 3.9(b) is taken as an example. Thus, Poisson'sratio is 0.25, and Vs0

varies from 100to 1900m/s. The auto-correlation curvesare calculatedfor all rings described

in �gure 3.24(b) with equation 3.48. The results are plotted in �gure 3.25. All curves are

between -0.4 and 1, converging towards 1 for low frequencies,and oscillating around zero for
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high frequencies. The shapes observed for the dispersion curves are transposedto the auto-

correlation, for instance, the strong variation in the slope at 0.9 Hz for the darkest curve. A

translation towards higher velocities on the dispersion curve appears as a translation of the

�rst minimum of the auto-correlation curve towards a higher frequency.

3.4 Conclusion

A robust and fast dispersion curve algorithm for one-dimensionalmodels is developed and

tested in representativ e cases.However, the sensitivity study carried in this chapter is far from

being exhaustive. The objective is limited to the determination of the signi�cant parameters

which might be inverted. Traditionally, Vs is the only oneparameterincluded in the inversionof

dispersioncurves. Nevertheless,this work demonstratesthat, in somecases,Vp hasalsoa non

negligible in
uence. The ellipticit y and the auto-correlation curvescan be easily computedas

well. For each spectral property, a mis�t function is de�ned. Theseforward algorithms can be

usedin a non-linear and stochastic inversionsuch asthe neighbourhood algorithm (chapter 4).



Chapter 4

Parameterization of a ground mo del

The inversion principles are presented in chapter 2 as well as the particular method used in

this work: the neighbourhood algorithm. Chapter 3 details the computation of dispersion,

ellipticit y and auto-correlationcurvesfor a one-dimensionalground model, aswell asthe mis�t

calculation in each case.To perform an inversion of experimental data, it is also necessaryto

identify the physical unknowns of the problem. For most of the stochastic inversionmethods,

modelsare characterizedby a set of uniform random deviatesbetween0 and 1. The objective

of this chapter is to investigatethe possiblealternativesfor transforming thoserandom vectors

into physical parametersof a one-dimensionalground model. In a �rst approach, it can be

seenas a scaling of the interval [0; 1] to the prior uncertainty of a particular layer property.

But things becomemore complicated when somecombinations of parameter values are not

physically acceptable. This problem is analysed in the �rst section. The e�ciency of the

inversion algorithm decreaseswith the number of parameters. When the number of layers

increases,low velocity zonesare likely to be present in the generatedpro�les. The second

section reviews the problems encountered with models with a great number of layers. The

third sectionproposesvarioussolutions to handlevelocity variations with a reducednumber of

parameters.

4.1 Theoretical model used in parameterization tests

During this work, numerousground models and parameterizationshave been tried while de-

veloping the inversion software. In the next sections,the in
uence of the parameterization is

illustrated through inversion exampleswith a common referenceground model. This latter

one is made of three layers including the bottom half space. The properties of each layer are

speci�ed in table 4.1. The velocity pro�les, the dispersionand the ellipticit y curvesare shown

in �gure 4.1.

The fundamental Rayleigh curve of �gure 4.1(b) is consideredin the next section as the

data curve that would have beenobtained by any of the experimental methods presented in

chapter 1. Various inversion schemesare tried to retrieve the original velocity pro�les. The

other curvesare usedin chapter 5 wheremore specializedinversionsare reviewed.

65
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Contrary to synthetic curves that can be calculated on any arbitrary frequency interval,

the experimental curvesare generallyavailable on a restricted frequencyband. Becausethere

is a close relation between the depth and the signal frequency content (section 3.1.8), the

quality of inversion strongly depends upon the frequency range of the measureddispersion
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Figure 4.1: Theoretical case for testing parameterizations. (a) Vp pro�le. (b) Dispersion curve for the
fundamental (solid) and the �rst higher mode (dots) of Love (grey) and Rayleigh (black). (c) Vs pro�le. (d)
Rayleigh fundamental ellipticit y.

Layer Thickness Vs Vp Poisson'sratio Density
Sediments 1 10 m 200m/s 375m/s 0.3 2 t/m3
Sediments 2 90 m 1000m/s 1750m/s 0.25 2 t/m3
Basement { 3000m/s 4500m/s 0.10 2 t/m3

Table 4.1: Properties of the referencemodel.

curve. Scherbaum et al. (2003) showed that the energyon the vertical component drastically

decreasesin the vicinit y and below the fundamental frequencyof the soil structure. Rayleigh

dispersioncurvesare currently best measuredon the vertical components, perpendicular to the

freesurface. It implies that the uncertainties on the apparent velocity determination below the
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threshold frequencyare usually signi�cant and limit the range of available dispersion curves.

From the shape of the ellipticit y (�gure 4.1(d)), this e�ect is assumedto occur below 5.5 Hz.

Actually, the ellipticit y curve has two maxima at 2.5 and 5.5 Hz. Hence,the energy on the

vertical component might be still su�cien t below 5.5 Hz. In the absenceof ambient vibration

simulations for this case,we cannot predict the value of the peak frequencyof the measured

H/V and thus the magnitude of the high-pass�lter e�ect. Hereafter, two casesare considered:

a broad band (0.2 to 20 Hz) and a narrow band (5.5 to 15 Hz) dispersion curve. The second

one is probably closerto frequencyrangeobtained for real experiment with Rayleigh waves.

4.2 Thic kness, Vp, and Vs

For each layer of the ground model, the consideredparametersare: the thickness(h), and the

velocities Vp and Vs. The density is generallynot inverted hereasits in
uence on the dispersion

curve is usually small comparedto the other parameters'one(section 3.1.8).

In this section,we make useof the standard neighbourhood algorithm developed in Fortran

by Sambridge (1999a). For each generatedparameterset, a mis�t value must be calculatedby

the forward algorithm, even if the parametersdo not ful�l with physical and prior conditions.

With the original inversion code, it is not possibleto reject a particular model. The wrong

model might bediscardedby returning an arbitrary high mis�t to the neighbourhood algorithm.

However, we prove hereafter that it is an ine�cien t method, especially when the number of

parametersis increasing. Assuminga parameterset P1 : : : Pn , when there is only onephysical

condition of the type Pi < Pj , there is one chanceover two to get a good model. From the

combinatorial probabilities, if the number of conditions increasesup to m, the chanceof getting

onegood model reducesto 1
2m . Typically, for a three-layer model, the number of parametersis

8 and the number of physical conditions of the type Pi < Pj is also8. Hence,the probability of

generatingonegood model is 1/256. Usual valuesfor the tuning parametersof the neighbour-

hood algorithm are it max =100, ns=100, and nr =100 to generate10000models. In most cases,

three iterations are thus necessaryto get at least one good model. At the next iteration, 100

new models are generatedin the 100 best cells. Hence,one new model is added closeto the

good model and 99 other modelsare still selectedin the wrong regionsof the parameterspace.

Finally, very few good models are obtained and the good regionsof the parameter spaceare

poorly investigated. All the wrong models are stored by the neighbourhood algorithm and all

of them are included in the computation of the Voronoi geometry. As the number of models is

increasing,the rate of the model generationis always decreasing,slowed down by uselesswrong

models. At the end of our work, we developed a modi�ed neighbourhood algorithm that takes

into account the model rejection in an e�cien t way (sections2.4). However, this study is based

on the standard algorithm which requiresan appropriate parametertransformation in order to

avoid generatingwrong ground models. This part is covered in this section.

The thicknessesof the layers may take whatever positive value. Thus, the transformation

is just a linear scaling from [0; 1] to [hmin ; hmax ]. The layer thicknessesmay also be set by
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specifying the absolute depth of the bottom of each layer (zi ). In this case,the user must

avoid overlapping of the depth rangeswhich may induce negative thickness. As for thickness,

it also reducesto a linear scalingfrom [0; 1] to [zmin ; zmax ]. Mixtures of both typesof position

parametersare not possiblein the developed software.

Vp and Vs are linked by Poisson'sratio. For geologicalmaterials, Poisson'sratio is always

between0 and 0.5. Hence,Vp and Vs must satisfy the following inequalities 0 < Vs <
p

2
2 Vp =

0:707Vp. There are two alternativesto parameterizeVp and Vs satisfying the conditions, which

both make useof ratio Vsp(� ) = Vs
Vp

:

1. Calculating Vs from the �rst parameterwith a scaling from [0; 1] to [Vs;min ; Vs;max ]. The

secondparameteris the ratio Vsp scaledto [Vsp;min ; Vsp;max ] where0 < Vsp;min andVsp;max <
p

2
2 .

2. Calculating Vp from the �rst parameterwith a scaling from [0; 1] to [Vp;min ; Vp;max ]. The

secondparameter is the ratio Vsp with the samelimits as in the last case.

The �rst option is more intuitiv e becauseVs has the greatest in
uence on the dispersion

curve. However, the generatedVp valuesrangefrom
p

2Vs to 1 or to any value above common

real observations. Secondly, the prior probabilities of Vs and Vsp are uniform on the user

speci�ed range. Consideringparametersindependently (Vs or Vsp), it meansthat the whole

parameterspaceis equally investigated. From the parameterizationpoint of view, every model

has an equal chance to be taken at random. However, consideringVp, it is the ratio of two

uniform random variablesVs and Vsp, and its density of probability is far from being constant

over the user speci�ed range. Thus, someVp values have more chancesto be generatedby

the neighbourhood algorithm than others. BecauseVp is not always well constrainedby the

dispersioncurve, the parameterizationmay arti�cially orientate the inversiontowardsparticular

models rather than exploring the whole parameterspace.From the user point of view, the Vp

pro�le may appear better constrainedthan it is really.

On the other hand, taking the secondoption, Vp pro�les areuniformly investigated. Because

Vs is relatively well constrainedby the dispersioncurve, the in
uence of the parameterization

is only sensitive at the beginning of the process. Once the area of solution is delineated, the

bias introduced by the non-uniform probability becomesnegligible. Also, the range for Vp is

�xed by the userand no abnormal Vp value is generated.Vs valuesare always lessthan
p

2
2 Vp.

For models with a reasonablenumber of layers (up to three or four), this option is probably

the best oneand it hasbeenchosenin the software implementation tested in the next sections.

For a stack of layers,a commoncondition is the absenceof low velocity zonesor a monotonous

increasingpro�le. This aspect is studied in section4.3 for a stack of N layers. The increasing

of velocity with depth may be parameterizedby setting the velocity increment at each interface

as parameters(P), and (Vp) i = (Vp) i � 1 + P. Vs is calculated as above with the valuesof Vsp.

Low velocity zonesmay still appear on Vs pro�les. When necessary, they may be avoided by

multiplying the �nal mis�t by a penalty factor, function of the magnitude of the low velocity

zone. This techniqueworksonly for a reducednumber of layers(up to threeor four), for reasons



4.2. THICKNESS, VP , AND VS 69

probably similar to the onesdetailed in the introduction of this section. We useit in the simple

parameterizationshereafter.

4.2.1 Tw o layers

The shape of the fundamental Rayleigh dispersioncurve in �gure 4.1(b) hasa complexshape.

However, we �rst test if it is possibleto invert it with a simplemodel madeof onelayer overlying

a half space. The curve is resampledwith 50 points regularly distributed on a log frequency

scale. The utilized parametersare detailed in table 4.2. The neighbourhood algorithm is

Layer Thickness Vp Vs/ Vp Density
Sediments 1 to 200m 200to 2,000m/s 0.01to 0.707 2 t/m3
Half-space { +10 to 3,000m/s 0.01to 0.707 2 t/m3

Table 4.2: Parameterized model for two-layer inversions. The "+" sign stands for incremental velocity: the
parameter is the velocity gap betweenthe �rst and the secondlayer.
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Figure 4.2: Inversion of the full dispersion curve with a two-layer mode. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.

tuned to be asexploratory aspossible,generating100modelsper iteration (ns) in the current

100best cells(nr ). Runsof 50 iterations arestarted with �v e distinct random seeds(chapter 2)

to test the robustnessof the results. Theseparametersare usually adjusted by trial and error.

The dimensionof the parameter spaceis 5. Each individual processgeneratesan ensemble of

5100possiblesolutions ranked by their mis�t values. The results of the inversionare shown in

�gure 4.2 in terms of velocity pro�les. Only the modelswith a mis�t lessthan 0.1 are selected.

The shape of the dispersion curve at low frequency(�gure 4.1) is obviously too complex to

be correctly inverted with a simple model madeof two layers. A more complexstructure has
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to be assumedin order to invert the dispersion curve between0.2 and 20 Hz (section 4.2.2).

However, the Vs pro�le below 8 m is well retrieved. The shapes of the referenceand the

calculated dispersion curve at high frequency (above 5 Hz) are similar. The low frequency

part of the curve prevents the mis�t from being improved and it in
uences the error on the

depth and on Vp. In the next paragraph,better resultscan be achieved by consideringonly the

dispersioncurve at high frequency.

The fundamental Rayleigh dispersion curve between 5.5 and 15 Hz, resampledwith 30

points regularly distributed on a log frequencyscaleand described in section4.1 (�gure 4.1) is

inverted in the sameconditions asabove. Figure 4.3 shows the minimum mis�t evolution with

the number of generatedmodels. The curve is never regular as already noticed by Sambridge

(1999a). But in general, the variations are progressively damped if the number of generated

models is su�cien t.
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Figure 4.3: Inversion with a two-layer model:

variation of the minimum mis�t with the inver-

sion advance. The �v e curvescorrespond to the

�v e inversion processesinitiated.

In �gure 4.4,each generatedmodel is represented

by a dot with a grey scaledepending on the mis-

�t value. Figure 4.4(a) is a projection of the �v e

dimension parameter spaceon the plane z1 � Vs0,

while the other plots (�gures 4.4(b) to 4.4(f)) show

the one-dimensionalvariation of each parameterver-

sus the mis�t value. The minimum achieved mis�t

is around 0.01. All generatedmodels are plotted in

�gure 4.4(a). The shapes for lowest mis�t values

in �gures 4.4(b) to 4.4(f) give valuable information

about the posteriormarginal uncertainties of onepa-

rameter. For instance,acceptinga level of error on

the experimental curve of 0.05, all valuesof Vp0 be-

tween300and 2000m/s ensurea good �t of the data

curve. Vp0 (theoretical value is 375m/s) is better re-

solved only if mis�ts below 0.03 are considered. In

�gures 4.4(d) to 4.4(f), it is clear that the inversion algorithm is not exploratory enoughto

samplethe wholeparameterspacefor poorly resolved parameters.For well constrainedparam-
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Figure 4.4: Inversion with a two-layer model: parameter space. (a) Projection of model points on the plane
z1 � Vs0. One-dimensionalmarginal for (b) z1, (c) Vs0, (d) Vs1, (e) Vp0, and (f ) Vp1.

eters (z1 and Vs0), the results are approximately the samefor all runs. For other parameters,
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each additional run may brought somenew solutions, improving the global sampling of the

parameter space. Even with only �v e parameters, the complexity of the parameter spaceis

such that an exhaustive sampling would be prohibitiv e.

The results of the inversion are shown in �gure 4.5 in terms of velocity pro�les. Only

the models with a mis�t less than 0.1 are selected(� 25000models). Retrieved Vp and Vs
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Figure 4.5: Inversion with a two-layer model: velocity pro�les. (a) Resulting Vp pro�les. (b) Resulting Vs

pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding to models of
�gures (a) and (b). The black dots are the theoretical dispersioncurve usedasthe target curve during inversion.

pro�les are visible in �gures 4.5(a) and 4.5(b). The black lines are the theoretical velocity

pro�les. The dispersion curve calculated for pro�les of �gures 4.5(a) and 4.5(b) are shown in

�gure 4.5(c) wherethe black dots are the simulated experimental curve de�ned on a restricted

range (section 4.1). According to the level of con�dence on the experimental curve, darkest

models may be discarded. The lightest models (mis�t < 0.3) �t nicely with the theoretical

model except for Vp within the basement. Vs is well retrieved for the �rst 8 m whereasa wide

range of Vp valuesmay explain the observed dispersion curve. Even for Vs, the uncertainties

greatly increasefrom 8 m, below the depth of the velocity contrast. However, if the dispersion

is known with a very good con�dence and a good precision, Vp0 can be correctly estimated

becauseit is not possibleto �nd any model with Vp0 > 500m=s and a mis�t below 0.03.

A commonsolution to improve the precisionfor deeper structure is to enlargethe frequency

rangeof the dispersioncurve. For a two-layer parameterization,broader frequencyrangeslead

to badly resolved structures with a minimum achievable mis�t above 0.1 (�gure 4.2). Hence,

it is not possibleto �nd an equivalent two-layer model for the more complexsoil structure. In

a real situation, when a two-layer parameterization gives worse results than a more complex

parameterization, it is a pieceof evidencethat the structure is probably not simply made of

homogeneoussediments overlying a hard-rock basement. In the next section, a three-layer

parameterization is usedand the in
uence of the frequencyrangeis checked.
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4.2.2 Three layers

The fundamental Rayleigh dispersion curve shown in �gure 4.1 is inverted with a three-layer

model. Various types of dispersion curve sampling are reviewed in this section. Finally, the

e�ect of the prior information on the depths is checked.

Broad band disp ersion curv e

The dispersion curve is sampledwith 50 points regularly distributed on a log frequencyscale

and on a wide frequencyrangefrom 0.2 to 20 Hz. The parametersare of the sametype as for

the precedingcasewith one supplementary layer. Table 4.3 gives the list of parametersand

their prior intervals. The Vp pro�le is imposedto bemonotonouslyincreasingby setting positive

velocity variations asparametersrather than the absolutevalue. Vs is kept monotonousby the

penalization technique (introdution of section4.2) on the low velocity zones.

Layer Thickness Vp Vs/ Vp Density
Sediments 1 1 to 50 m 200to 2,000m/s 0.01to 0.707 2 t/m3
Sediments 2 1 to 200m +10 to 2,000m/s 0.01to 0.707 2 t/m3
Half-space { +10 to 3,000m/s 0.01to 0.707 2 t/m3

Table 4.3: Parameterizedmodel for three-layer inversions. The "+" sign stands for incremental velocity: the
parameter is the velocity gap betweenthe �rst and the secondlayer.

Five independent runs arestarted with ns (number of samplesper iteration) and nr (number

of cellsto resample)being100. The number of iterations is setarbitrarily to 150. The evolution

of the minimum mis�t with the number of generatedmodels (not shown) �nally proves that

valuesfor the tuning parametersare necessaryand su�cien t. The total number of generated

model is hence75500,with a minimum mis�t around 0.02. The Vp and Vs pro�les of models

(8900) for which the mis�t is lessthan 0.1 are plotted in �gures 4.6(a) and 4.6(b), respectively.

The corresponding dispersioncurvesare shown in �gure 4.6(c).

On the �rst ten metres, the inverted pro�les are very similar to those obtained with the

two-layer parameterization. The velocities of the basement are also relatively well retrieved

(below 100m). The posterior uncertainties of the intermediate layer are higher than the oneof

the �rst layer, mainly becauseof the low sensitivity of the dispersioncurve to the intermediate

layers (section 3.1.8 on page54). Though Poisson'sratio is left totally free, the uncertainties

on Vp and Vs of the intermediate layer are of the sameorder. The uncertainty on the depth

determinations are always high even for the �rst interface at ten metres (errors up to nearly

40%1). A preciseinversion of the depths is possiblebut requiresa very high precisionon the

dispersioncurve.

This caseis theoretical. During real experiments, the dispersion is not de�ned down to

0.2 Hz if the resonancefrequency(given by the main peak of the ellipticit y or of the measured

H/V) is around 5.5 Hz. The e�ect of such limitation is tested in the next section.

1The depth of the best models is around 10 m. Considering a mis�t of 0.05 as acceptable,the depth may
varies between8 and 14 m, which makesan error between20 and 40%.
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Figure 4.6: Inversion with a three-layer model over a broad frequency range. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.

Narro w band disp ersion curv e

The dispersioncurve is resampledwith 30points on a narrow frequencyrangefrom 5.5 to 15Hz

asin section4.2.1. The parameterizationis exactly the sameasin the above section(table 4.3).

Ten independent runs are started with the samecharacteristics as in the above section. The

number is increasedto improve the parameter-spacesampling.

The modelswith a mis�t lower than 0.1 (� 4800matches)are displayed in �gure 4.7. The

minimum mis�t is around 0.02. The Vs pro�le is correctly retrieved down to 8 or 10 m like in

the two layer casein section4.2.1. Below, a lot of models are virtually possible. With a very

high precisionon the dispersioncurve, Vs pro�le seemsto be correctly retrieved down to 100m,

for instancethe white one in �gure 4.7(b). However, hereafter (narrow band dispersion curve

with prior information on Vp, on page 77), we show that the parameter spaceinvestigation

is not su�cien t in this caseleading to optimistic conclusions. Below 100 m, all models are

possibleeven with a very low mis�t (the white onewith an interfaceat 170m).

Low frequency disp ersion curv e

From the above discussion,the low frequencypart of the dispersion is absolutely necessaryto

investigatedeeplayers. In this paragraph,we show an exampleof inversion without the high

frequencypart, simulating an experiment with only large aperture arrays. The fundamental

Rayleigh dispersioncurve in �gure 4.1(b) is resampledwith 30 samplesfrom 0.2 to 8 Hz.

The inversion is run with �v e distinct processeswith the parameterization detailed in ta-

ble 4.3. The retrievedvelocity pro�les areshown in �gures 4.8(a)and4.8(b). The corresponding

dispersioncurvesare plotted in �gure 4.8(c). Whereasthe depth and the velocities (Vp and Vs)
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Figure 4.7: Inversionwith a three-layer model over a restricted frequencyrange. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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Figure 4.8: Inversion with a three-layer model over a low frequency range. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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of the basement areobtainedwith approximately the sameprecisionasin �gure 4.6,strong bias

is observed for the properties of the �rst layers. Contrary to all precedinginversion examples

of this chapter, the averageretrieved pro�le is false. The averageVs0 found is 400 m/s while

the correct value is 200 m/s. Even more annoying, the models with Vs0 = 200 m/s have all

very bad mis�ts. In the absenceof any constraint on Vs0, the neighbourhood algorithm and

the chosenparameterization2 orientate the search to an arbitrary and falsepro�le.

Those results highlight the needfor a good de�nition of the dispersion curve at high fre-

quency (from 8 or 10 Hz in this case). In many cases,the ambient noise techniques loose

reliabilit y in the highest frequencyrangedue to various factors (unknown sourcesdistribution

and sourcetype, higher modes,too large aperture for arrays,.. . ). Active sourcesmethods, for

which a better control on the sourceparametersis possible,are able to provide complementary

information at such frequencies.

Prior information on depth

If the depth of any particular velocity contrast is known from other investigationslikea reference

boreholeor a penetration test, it can be introduced in the parameterization. Such a test is

performed on the samedispersion curve as in �gure 4.6 with the parametersde�ned in table

4.4. The depth is supposedto be known with an error of 5 m.

Layer Depth Vp Vs/ Vp Density
Sediments 1 1 to 90 m 200to 2,000m/s 0.01to 0.707 2 t/m3
Sediments 2 95 to 105m +10 to 2,000m/s 0.01to 0.707 2 t/m3
Half-space { +10 to 3,000m/s 0.01to 0.707 2 t/m3

Table 4.4: Parameterized model for three-layer inversionswith prior depth. The "+" sign stands for incre-
mental velocity: the parameter is the velocity gap betweenthe �rst and the secondlayer.

Five runs are launched generatingthe modelsdisplayed in �gure 4.9. The mis�t valuescan

be compareddirectly to the onesof �gure 4.7 becausethe dispersionsamplesusedto calculate

them areexactly the same.Reducingthe depth prior interval hasobviously a positive in
uence

in the inversion process. The main e�ect is to reducethe uncertainty of the velocities of the

intermediate layer.

In �gure 4.9, the improvement of the posterior uncertainty may be due to the strong con-

straint on the large band dispersion curve. The sameparameterization is also tested on the

dispersion curve with a narrow frequency band as in �gure 4.7. The results are shown in

�gure 4.10. Forcing the depth of the basement indisputably allows a better retrieval of the

velocity in the secondlayer below 10 m. However, the parameterizedmodel made of three

uniform layers imply that the velocity has a constant pro�le between10 and 100 m. Stating

that the velocity pro�les are correctly measureddown to 100m is certainly false. The results

at 100 m are in
uenced by the constraints on Vs between 10 and 25 m. Inversionswith one

2For Vs , the prior density of probabilit y is not uniform in this parameterization, asexplainedat the beginning
of section 4.2
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Figure 4.9: Inversion with a three-layer model with prior depth. (a) Resulting Vp pro�les. (b) Resulting Vs

pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding to models of
�gures (a) and (b). The black dots are the theoretical dispersioncurve usedasthe target curve during inversion.
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Figure 4.10: Inversion with a three-layer model at high frequencywith prior depth. (a) Resulting Vp pro�les.
(b) Resulting Vs pro�les. The black linesare the theoretical velocity pro�les. (c) Dispersioncurvescorresponding
to models of �gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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or more supplementary degreesof freedommust be carried out to de�ne the total penetration

depth of the method.

In conclusion,any prior information about the depths of the known velocity contrasts help

the inversion of the dispersion curves even for incomplete ones. Like any other information

source,its reliabilit y must be ensuredand the length of the �xed depth interval set according

to the data sourcecon�dence.

Prior information on Vp

Vp pro�les may also be measuredby other meansnot related to surfacewave properties. Re-

fraction tests, boreholelogging, cross-hole,. . . may bring valuable information about Vp. Like

the depth, the prior information about Vp is introduced in the parameterization itself. In the

above sections, the Vp pro�le is left as totally free in a very large interval. Here, we �x it

in a deterministic way, removing Vp from the parameter list. Table 4.5 details the remaining

parameters.The dimensionof the parameterspacereducesfrom 8 to 5.

Layer Thickness Vp Vs/ Vp Density
Sediments 1 1 to 200m 375m/s 0.01to 0.707 2 t/m3
Sediments 2 1 to 200m 1750m/s 0.01to 0.707 2 t/m3
Half-space { 4500m/s 0.01to 0.707 2 t/m3

Table 4.5: Parameterizedmodel for three-layer inversionswith prior Vp.

Using the standard implementation of the neighbourhood algorithm, it is not possibleto

disconnectthe depthsof the Vs and Vp pro�les. Hence,a real Vp pro�le cannot be �xed without

forcing the Vs pro�le to have interfacesat the samedepths. For this test, the depths of the Vp

pro�le are left as free parametersand they follow the depths of the Vs pro�le. The conditional

neighbourhood algorithm (section 2.4) would allow totally independent pro�les for Vs and Vp.

Consequently, the Vp pro�le could be �xed without a�ecting directly the inversionof Vs.

The results are shown in �gures 4.11 and 4.12 for a dispersion curve de�ned over a broad

and a narrow frequencyband, respectively (�v e distinct inversionprocessesin each case).The

minimum mis�t is around 0.002for both cases.In �gure 4.11,31000modelshave a mis�t lower

than 0.1 (23000in �gure 4.12), the threshold usedto selectmodel.

Comparing �gures 4.6 and 4.11, the uncertainty of Vs on the intermediate layer is greatly

reduced,showing a direct e�ect of the �xing Vp0. However, �xing Vp has also an e�ect on the

depth error of the deepest contrast. Other tests with wrong prior Vp valuesshow that the �nal

Vs results are weakly a�ected by over-estimatedVp pro�les. In contrast, any under-estimation

of Vp completely ruins the inversion of Vs becausethe maximum of Vs is automatically set to
p

2
2 Vp. This is why Vp valuescan be �xed only whenreliable data exist. Testswith and without

the prior information must be carried out. When there is no pre-existing data about Vp, the

best option is to include it in the parameterization like in precedingsection,with a very large

prior interval.
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Figure 4.11: Inversion with a three-layer model with prior Vp. (a) Resulting Vp pro�les. (b) Resulting Vs

pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding to models of
�gures (a) and (b). The black dots are the theoretical dispersioncurve usedasthe target curve during inversion.
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Figure 4.12: Inversionwith a three-layer model at high frequencywith prior Vp. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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The parameterizationusedfor generating�gure 4.12is a particular caseof the moregeneral

parameterization relating to �gure 4.7. Hence,if the investigation of the parameterspacewas

perfectfor �gure 4.7,all modelsappearingin �gure 4.12would bealsogeneratedby the inversion

processillustrated in �gure 4.7. Clearly, the introduction of reliable prior information about Vp

alsomakesthe inversionmore e�cien t leadingto a better parameterspaceinvestigation. From

�gure 4.12,if the dispersioncurve is known with a su�cien t precision(acceptablemis�t at 0.2),

Vs1 can be determinedwith a precisionof 200m/s (� 20%) down to 20 or 30 m. Without the

Vp information this uncertainty is greater than 200m/s (caseof �gure 4.7).

4.3 Stack of N layers

In section 4.2, the soil structure is modeled with a few layers of varying thicknesses.Alter-

natively, the velocity variation may be discretizedby a great number of thin layers with �xed

thicknesses. It is the usual technique for linearized inversion methods (Herrmann 1994). It

generally implies a greater number of parametersthan the approach described in section4.2.

In this section,we invert the samedispersioncurveasin section4.2. However, Vp is supposed

to be known in a deterministic way and without bias to allow the comparisonof arbitrary and

increasingpro�les. In section4.3.1,an additional inversioncaseis proposedwith Vp and Vs as

the variable parameters. The variation of velocity is represented by a stack of ten layers with

�xed thicknesses(2, 3, 5, 8, 12, 17, 23, 30, 38, and 47 m) plus a half space.The density is �xed

to 2 t/m 3 in all layers.

4.3.1 Arbitrary pro�le

The model is made of 11 layers with one parameter per layer (Vsp, the ratio of Vs over Vp).

Table 4.6 summarizesthe properties of each layer.

Layer Depth Vp Vs/ Vp Density
0 2 m 375m/s 0.01to 0.707 2 t/m3
1 5 m 375m/s 0.01to 0.707 2 t/m3
2 10 m 375m/s 0.01to 0.707 2 t/m3
3 18 m 1750m/s 0.01to 0.707 2 t/m3
4 30 m 1750m/s 0.01to 0.707 2 t/m3
5 47 m 1750m/s 0.01to 0.707 2 t/m3
6 70 m 1750m/s 0.01to 0.707 2 t/m3
7 100m 1750m/s 0.01to 0.707 2 t/m3
8 138m 4500m/s 0.01to 0.707 2 t/m3
9 185m 4500m/s 0.01to 0.707 2 t/m3

Half-space { 4500m/s 0.01to 0.707 2 t/m3

Table 4.6: Parameterizedmodel for N-layer inversions.

Poisson'sratios are totally independent and Vs pro�les might be generatedwith eventually

various LVZs. The inversion is started with �v e distinct random seeds.The number of new



80 CHAPTER 4. PARAMETERIZA TION OF A GROUND MODEL

modelsper iteration is 100(ns) and the number of cellsresampledis 100(nr ). 150iterations are

successively performedto obtain a total of 75,500models. The resultsare shown in �gure 4.13.

The minimum mis�t is around 0.005.
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Figure 4.13: Inversion with a N-layer model accepting LVZ (Vs only). (a) Resulting Vs pro�les. The black
lines are the theoretical velocity pro�les. (b) Dispersioncurvescorresponding to modelsof �gure (a). The black
dots are the theoretical dispersion curve usedas the target curve during inversion.

The Vs pro�les in �gure 4.13(a) can be directly comparedwith �gure 4.11(b) alsoobtained

with a �xed Vp pro�le and on the samedispersioncurve. The presenceof LVZs slightly increases

the non-uniquenessof the problem. The e�ect of a very slow layer may be thwarted when

overlying a faster layer.

In �gure 4.13, the �xed Vp pro�le prevents from generatinga number of additional models.

Another inversioncaseis then proposedwith varying Vp and Vs pro�les. The rangeof Vp values

inside each layer is set to [200; 6000]m/s. The inversion is started with 20 distinct random

seedsto obtain a total of 202,000models. The results are shown in �gure 4.14. The minimum

mis�t is around 0.012. 90,000modelshave mis�t lessthan 0.1.

The Vs pro�les in �gure 4.14(b) can be directly comparedwith �gure 4.6(b) obtained on

the samedispersion curve. In this case,the presenceof LVZs drastically increasesthe non-

uniquenessof the problem. From �gure 4.14, no information can be retrieved between 10 m

and 185 m. By contrast, �gure 4.6 shows for the samedispersion curve that interesting in-

formation can be extracted by assumingthat no LVZ are present. However, in �gure 4.6, the

velocities just below 10 m and just above the contrast around 100m must be the same,which

is probably too restrictive. In the next sections,various approachesare proposedto allow ve-

locity variations inside layers and avoiding LVZs with the standard neighbourhood algorithm.

However, a simplersolution canbe implemented with the conditional neighbourhood algorithm.
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Figure 4.14: Inversion with a N-layer model accepting LVZ (Vp and Vs). (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gure (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.

4.3.2 Vs inversion without LVZ

In common geologicalsituations, Vs increaseswith depth: rock weathering, sediment com-

paction,.. . (Bachrach et al. 2000, Scherbaum et al. 2003). However, the velocity may

decreasewith depth in somecases:saturated layers, clays overlied by sandy formations, hard

ground above unconsolidatedsediments, lava 
o ws,.. . From the above example(section 4.3.1),

if the soil structure is madeof thin intercalations of soft and rigid layers, the dispersioncurve

inversioncannot resolve the propertiesof each individual layer. Consequently, a limited number

of LVZs can be tolerated in the model when the geologicalstructure of the areajusti�es it. Be-

tweentwo particular LVZs, the velocity must be constant or must increasewith depth. Taking

these conditions into account during inversion is capital but not straightforward. There are

numerousways of implementing such prior information, we developed someof them, described

in appendix B.

Theoretically, the parameterization must ensurethat any ground model included in the

parameterspacehasan equalchanceto be generatedby the neighbourhood algorithm. If this

is not veri�ed, the inversion algorithm itself introducesprior information, prefering particular

classesof models to others. For instance,in section4.3.1,all Vp pro�les have the samechance

to be generated,but the Vs pro�les arecalculatedby the mutliplication of two randomvariables

andhavenot a uniform probability (�gure B.1). The prior distributions of the proposedmethods

are detailed in appendix B.

The inversionof the broad band dispersioncurve is started with �v e distinct random seeds,

using the scaleddiagonal parameterization for Vs pro�les and a �xed Vp pro�le (section B.8).

50 iterations are launched per inversion processgeneratinga total of 25500models. Among
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them, 14000have a mis�t lower than 0.1. The results are shown in �gure 4.15. In the same

conditions, the scaledinterpole method tested in �gure B.8 producesonly 285 models with

mis�t lower than 0.1. In this case,the choiceof the method for generatingmodelshasa strong

in
uence on the global e�ciency of the inversionalgorithm.
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Figure 4.15: Inversion with a N-layer model rejecting LVZ by the diagonal method. (a) Resulting Vs pro�les.
The black lines are the theoretical velocity pro�les. (b) Dispersion curvescorresponding to modelsof �gure (a).
The black dots are the theoretical dispersion curve usedas the target curve during inversion.
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Figure 4.16: Comparison of a three-layer and N-layer inversions. The minimum and maximum Vs for models
with a mis�t lower than 0.02 are reported for each inversion case: three-layer inversion (plain lines), N-layer
with LVZs (dotted lines), and N-layer without LVZs (dashedlines). Figure (b) is a zoom on the �rst ten metre
for clarit y.

In �gure 4.16, the inversion with a three-layer model and with a N-Layer model accepting

LVZs (�gure 4.13) or rejecting LVZs (�gure 4.15) are compared. The mis�t are calculated on

the samedata curvesin the three cases.Only the minimum and maximum Vs observed at each

depth for each caseis reported in the �gures. The inversionwhich acceptsLVZ always results
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with quite large uncertainties comparedto the inversionsassumingan increaseof the velocity

with depth. The three-layer inversion gives more information about the depth uncertainty,

comparedto other cases,whereasit under-estimatesthe uncertainty on the velocity, especially

below the velocity contrasts (between10 and 70 m, and between100and 180m) and near the

surface(between0 and 5 m).

In conclusion,inverting with a very simple model madeof uniform layers doesnot provide

the completeuncertainty about the ground structure. In contrast, the inversion with a great

number of layers requires the introduction of relationships between the velocities of adjacent

layers, to avoid generatinglot of low velocity zones.Thoserelationshipscan be translated into

parameterizationrules for a simple structure whereVp is constant or increasing.

4.4 Non-uniform layers

In the precedingsection,it hasbeenshown that simplemodelswith homogeneouslayersusually

under-estimatethe posterior uncertainty. A solution to this issueis proposedin this section

by the introduction of vertically heterogeneouslayers. A linear and a power law increaseof

the velocity with depth are consideredhere. The dispersioncurve computation is designedfor

layers with homogeneousproperties. Consequently, in both cases,the variation is discretized

by several sub-layers for which properties are managedby the characteristicsof the main het-

erogeneouslayer.

4.4.1 Linear variation

The velocity (either Vp or Vs) at depth zi is given by

Vi = V0 +
Vn � V0

zn � z0
(zi � z0) (4.1)

where z0 is the top of the consideredlayer, V0 is the velocity at z0, zn is the bottom of the

consideredlayer, and Vn is the velocity at zn . For dispersion curve computations, the func-

tion Vi (z) is discretized into a �xed number of homogeneoussub-layers. Their number (n)

is generally kept as low as possible(between 5 and 10) to avoid an increaseof the inversion

computation time. The thicknessesof the sub-layers are all equal. This kind of pro�le is not

implemented in the inversion algorithm basedon the standard neighbourhood algorithm. For

historical reasons,it is only available for the conditional neighbourhood algorithm.

4.4.2 Power law variation

The velocity (either Vp or Vs) at depth zi is given by

Vi = V0((zi + 1)� � (z0 + 1)� + 1) (4.2)
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wherez0 is the top of the layer considered,V0 is the velocity at z0, � is the power-law exponent,

generallyvarying between0 and 1. The substraction in equation 4.2 is necessaryif the power

law variation is used for deep layers (z0 > 0). Like the linear pro�les, the function Vi (z) is

divided into a �xed number of homogeneoussub-layers. Setting the exponent � asa parameter

is not a good choice,becauseit generatesmodelswith an uncontrolled maximum velocity. The

situation is even worseif several heterogeneouslayersare usedin the samestructure. A better

solution is to set the top (V0) and the bottom (Vn ) velocity as two distinct parameters. For

the conditional neighbourhood algorithm, the simple condition V0 < Vn is introduced. For the

standard neighbourhood algorithm, V0 and dV are the parameters,Vn being equal to V0 + dV.

� is calculatedby solving the following equation:

f (� ) = (zn + 1)� � (z0 + 1)� �
Vn � V0

V0
= 0 (4.3)

A few iterations with the bissectionmethod are generallynecessary. There is always only one

solution between 0 and 1 becausef (� ) is monotonously increasing. Other iterativ e methods

are not appropriate.

If the thicknessesof the sub-layers are constant, the power law variation is badly sampled.

Very high velocity jumps are observed for the �rst sub-layers. Thus, it is better to imposea

constant velocity jump from onesub-layer to the next one,equal to dV
n . The depth of the top

and of the bottom of each sub-layer is then easily calculated from

z0; : : : ;
�

i
dV
V0

+ (z0 + 1)�

� 1=�

� 1; : : : ; zn (4.4)

Inside each sub-layer, for the sake of simplicity, we set the velocity of the sub-layer to the value

of the analytical power law function at the middle of the sub-layer. Hence,

Vi = V0

��
zi � 1 + zi

2
+ 1

� �

� (z0 + 1)� + 1
�

; i = 1; : : : ; n (4.5)

To summarize, from the thicknessof the layer and dV (or Vn), it is possibleto de�ne in

a unique way the individual thicknessesof each sub-layer and their velocities. An interme-

diate computation is necessaryto obtain the value of the exponent. The exponent � can be

recalculatedfrom the thicknessesand the velocities of the two �rst sub-layers by solving the

equation

g(� ) = (z2 + 1)� �
V2

V1
(z1 + 1)� +

�
V2

V1
� 1

�
(z0 + 1)� =

V2

V1
� 1 (4.6)

g(� ) �
�

V2
V1

� 1
�

is alsomonotonouslyincreasingand have only oneroot between0 and 1. It is

solved by bissection.

The parametersfor a layer with power law gradient are V (either Vp or Vs), dV ( or Vn ),

and the thicknessH (or z0 and zn , the depth of the top and of the bottom of the layer). The

number of sub-layers is only a tuning parameter.
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Figure 4.17: Inversion with a three-layer model with heterogeneouslayers, with prior information about the
depth of basement. (a) Resulting Vp pro�les. (b) Resulting Vs pro�les. The black lines are the theoretical
velocity pro�les. (c) Dispersion curvescorresponding to models of �gures (a) and (b). The black dots are the
theoretical dispersion curve usedas the target curve during inversion.
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Figure 4.18: Inversion with a three-layer model with heterogeneouslayers. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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An example of the use of layers with a power law variation in the inversion is shown in

�gure 4.17. This is the samecaseas in �gure 4.10wherethe two �rst homogeneouslayers are

replacedby layers with power law variations. The number of �xed layers is �v e in each case.

Two parametersare added to the parameter space(making a total of 10 parameters)of the

inversion plotted in �gure 4.10. The Vp variation acrossthe layers can vary between 0 and

2000m/s. The minimum achieved mis�t is similar to the homogeneouscase,but the posterior

uncertainty on the secondlayer is larger in theselater inversions.

This kind of layer is also tested with a large band dispersion curve (from 0.2 to 20 Hz) in

�gure 4.18. Comparedto �gure 4.6, the uncertainty are slightly increased.

4.5 Conclusions

To conclude, �gure 4.19 summarizesthe Vs pro�les obtained for a three-layer inversion with

uniform velocity layers(from �gure 4.6) and with gradient velocity layers(from �gure 4.18),and

for a N-layer model acceptinglow velocity zones(from �gure 4.14). The calculateduncertainties

are di�erent in each case. The parameterization has a drastic in
uence over the inversion of

dispersioncurves,the solution of which is poorly constrainedif the correct prior information is

not introduced.
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Figure 4.19: Comparison of three type of parameterizations (Vs pro�les): (a) inversion with a three-layer
model with homogeneouslayers, (b) inversion with a three-layer model with gradient layers, and (c) ten layers
of �xed thicknesses,accepting low velocity zones.

This chapter shows that even for a simple model with only two contrasts, the inversion of

the dispersion curve doesnot provide one unique solution. This work highlights the needfor

largeband dispersioncurvesin order to reach deepsoil structures. For real cases,the dispersion

curvesdo not have a perfect shape as it is the casein this chapter. Three-dimensionale�ects,

lateral heterogeneities,.. . aresomeof the e�ects that may alter the shapeof the measuredcurve.
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In this context, the prior information is of prime importance.
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Chapter 5

Enhanced inversions

In this chapter, the inversionof fundamental Rayleigh dispersioncurves(chapter 2) is extended

to several typesof specialinversions.The �rst part is dedicatedto the exploitation of the various

modes, including higher Rayleigh and Love modes. The secondpart deals with the direct

inversionof spatial auto-correlationcurves. Finally, inversionalgorithms are alsodeveloped for

Rayleigh ellipticit y.

5.1 Multimo dal curv es

For ambient vibration and active sourceexperiments, higher Rayleigh modes are sometimes

observed. The presenceof higher modesdependsupon the depth and the type of acting sources

and upon the stratigraphy (Aki and Richards 2002,Xia et al. 2003,Soccoand Strobbia 2004).

For the interpretation of ambient vibrations, there is absolutely no control over the source

distribution (space, time and energy content). The apparent velocity measuredon vertical

components is not always due to body waves and Rayleigh fundamental mode but higher

modesmay be recordedas well. The inversionof dispersioncurvesdescribed in the preceding

chaptersrequiresthat the target curveusedto calculatethe mis�t is e�ectively the fundamental

Rayleigh mode. In a similar way, when processingthe horizontal components of ambient noise

measurements, the frequency-wavenumber method provides the apparent velocity of the most

energeticwaveswhich may be of Love or Rayleigh type. Again, a correct identi�cation of each

mode is necessaryto proceedwith a dispersioncurve inversion.

Inverting the higher modesor Love modesmay be promising issuesto improve the obtained

velocity pro�les. Xia et al. (2003) suggestedthat for the samewavelength, the inversion of

higher modes can "see" deeper than the fundamental mode. Beaty et al. (2002) observed

an improvement of the inversion results when higher modes are included. The horizontal

components are high-pass�ltered at a frequency lower than the resonancefrequencyunlike

the vertical components high-pass�ltered around the resonancefrequency(Scherbaum et al.

2003). The horizontal components still carry a su�cien t signal to noiseratio to provide reliable

information on the wave propagation. Horizontal components contain a mixture of Love and

Rayleigh modesbut somesynthetic testsshow that the Lovewave may predominate(Bonnefoy-

89
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Claudet et al. 2004). The measurement of the Love curve at a frequencyfor which the Rayleigh

curve cannot be estimatedextendsthe frequencyrangeof the dispersioncurve. Consequently,

with the samearray deployment, the method can give reliable velocity pro�les down to deeper

soil structures. Thosetwo assertionsare tested in detail with the developed inversiontool.

In a last section, attention is paid to the identi�cation of higher modes. In most cases,

confusing two modes have a dramatic in
uence over the �nal results and usually ruins the

quality of the obtained velocity pro�les. A technique has beendeveloped to identify mode in

an automatic way.

Like in chapter 2, the referencemodel usedin this sectionis described in �gure 4.1.

5.1.1 Rayleigh higher mo des

The fundamental mode and the �rst higher mode are consideredhere. The �rst higher mode is

inverted alonebeforebeing mixed with the fundamental mode. The fundamental mode alone

is studied in chapter 4 but it is inverted again to measurethe correctnessof the �rst higher

mode whenonly the fundamental mode is usedasa constraint. The e�ect of including the �rst

higher mode with a narrow frequencyband is �nally estimated.

First higher mode alone

The �rst highermodecurve in �gure 4.1(b) is resampledwith 30points anda constant frequency

step on a log scalebetween2.75 and 20 Hz. This curve is inverted with the parameterization

described in table 4.3. The results are shown in �gure 5.1. The fundamental mode is required
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Figure 5.1: Inversionof �rst higher mode alone: no prior information. (a) Resulting Vp pro�les. (b) Resulting
Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding to models
of �gures (a) and (b). The grey curvesare the calculated fundamental mode (lowest curves)and the �rst higher
mode (highest curves). The black dots are the theoretical dispersion curve used as the target curve during
inversion. The dotted line is the fundamental curve, not usedfor the mis�t computation
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to calculate the �rst higher mode (section 3.1.5). This is why both modes are plotted in

�gure 5.1(c), clearly visible with two families of curves, the highest velocity valuesbeing the

�rst higher mode. The high mis�t obtained (comparedto lessthan 0.02 in �gure 4.6) is due

to the bad �t of the �rst higher mode between6 and 12 Hz. When comparing the theoretical

fundamental curve (dotted black line) with the calculated fundamental mode (secondfamily

of curves, the lowest), a clear gap is observed. In �gure 5.1(b), almost no model is generated

with a depth of the �rst interface above 20 m. Contrary to fundamental mode, with this

parameterization,the inversionseemsto be trapped in a secondaryminimum of the parameter

spacewith a mis�t around 0.1.
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Figure 5.2: Inversion of �rst higher mode alone: depth between1 and 20 m/s. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gures (a) and (b). The grey curvesare the calculated fundamental mode (lowest curves) and the
�rst higher mode (highest curves). The black dots are the theoretical dispersion curve usedas the target curve
during inversion. The dotted line is the fundamental curve, not usedfor the mis�t computation.

To forcethe algorithm to exploreother regionsof the parameterspace,the inversionis done

again with the interval for the �rst thicknessreducedto [1; 20] m. The results are displayed in

�gure 5.2 in the sameway as in �gure 5.1. A minimum mis�t lessthan 0.01 is found with a

depth and a fundamental model that better �t the theoretical model. From 4 Hz and below,

the calculatedfundamental curve doesnot follow the theoretical curve. This indicatesthat the

solution is not completelyinvestigatedby the neighbourhood algorithm and that the �rst higher

modedoesnot carry exactly the sameinformation asthe fundamental mode. Intensive inversion

runs would generategood �tting modelswith a fundamental modearound the theoretical curve

(not donehere). In this case,we know that a better solution exists for depths lower than 20 m.

But even for real cases,this kind of operation is adviced to check the validit y of the obtained

pro�les.
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Fundamen tal mode alone

To estimate the quality of the information carried by each mode, it is necessaryto visit again

the fundamental mode inversion. The inversion plotted in �gure 4.6 is relaunched with the

simultaneouscomputation of the �rst higher mode. The results are shown in �gure 5.3. Com-

paring �gures 5.2(c) and 5.3(c), whereall models with a mis�t lessthan 0.1 are selected,the
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Figure 5.3: Inversion of the fundamental mode alone. (a) Resulting Vp pro�les. (b) Resulting Vs pro�les.
The black lines are the theoretical velocity pro�les. (c) Dispersion curves corresponding to models of �gures
(a) and (b). The grey curves are the calculated fundamental mode (lowest curves) and the �rst higher mode
(highest curves). The black dots are the theoretical dispersion curve usedas the target curve during inversion.
The dotted line is the �rst higher mode, not usedfor the mis�t computation.

deviationsaround the target curves(black dots) are similar. Obviously, the fundamental curve

o�ers a weaker constraint over the depth of the secondlayer than the inversion of the �rst

higher mode (�gures 5.2(b) and 5.3(b)). However, the fundamental curve inversion does not

tolerate Vs greater than 3400m/s just below 100 m, whereasfor the �rst higher mode, many

models with Vs greater than 3200m/s are found with a low mis�t. In �gure 5.3, the average

curve calculatedfor the �rst higher mode �ts perfectly the theoretical curve for all frequencies

below 5 Hz. Between5 and 15 Hz, the fundamental mode doesnot constrain the �rst higher

mode, in a similar way that the �rst higher modecannotconstrain the fundamental modebelow

5 Hz (�gure 5.2). From theseobservations, the fundamental curve seemsto be necessarybelow

5 Hz and the �rst higher mode is mandatory above 5 Hz, other parts are carrying redundant

informations. Thesethreshold frequenciesare valid only for this caseand do not have a general

meaning.

Fundamen tal and �rst higher modes

To check theseconclusions,the fundamental mode below 5 Hz and the �rst higher mode above

5 Hz are jointly inverted in �gure 5.4. The black dots in �gure 5.4(c) are the samplepoints
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Figure 5.4: Inversion of the fundamental and the �rst higher mode. (a) Resulting Vp pro�les. (b) Resulting
Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding to models
of �gures (a) and (b). The grey curvesare the calculated fundamental mode (lowest curves)and the �rst higher
mode (highest curves). The black dots are the theoretical dispersion curves used as the target curve during
inversion. The dotted lines are the fundamental and �rst higher mode not usedfor the mis�t computation.

of the inverted dispersion curve. The thin dotted lines are the theoretical dispersion curves

of the unconstrainedparts of the dispersioncurves. Theselater onesdo not show any special

spreadingof the calculateddispersioncurves,proving that they contain redundant information.

Layer Depth Vp Vs/ Vp Density
Sediments 1 1 to 20 m 200to 2,000m/s 0.01to 0.707 2 t/m3
Sediments 2 30 to 120m +10 to 2,000m/s 0.01to 0.707 2 t/m3
Half-space { 4000to 5,000m/s 0.65to 0.68 2 t/m3

Table 5.1: Parameterizedmodel with a basement between30 and 120m. The "+" sign stands for incremental
velocity: the parameter is the velocity gap betweenthe �rst and the secondlayer.

Layer Depth Vp Vs/ Vp Density
Sediments 1 1 to 15 m 200to 2,000m/s 0.01to 0.707 2 t/m3
Sediments 2 15 to 30 m +10 to 2,000m/s 0.01to 0.707 2 t/m3
Half-space { 4000to 5,000m/s 0.65to 0.68 2 t/m3

Table 5.2: Parameterizedmodel with a basement between15 and 30 m. The "+" sign stands for incremental
velocity: the parameter is the velocity gap betweenthe �rst and the secondlayer.

In a real case,the fundamental dispersioncurve is rarely available down to 0.2 Hz when the

�rst peakof the ellipticit y is at 5 Hz. Usually, onecan expect to get a reliable dispersioncurve

only below 5 Hz, which is redundant with the high frequencypart of the �rst higher mode. As a

last example,the inversionof the narrow band dispersioncurve shown in �gure 4.7 is re-started

adding the �rst higher mode as a supplementary constraint. Like the fundamental mode, the

higher mode is rarely well de�ned at low frequencies. In this case,the �rst higher mode is
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supposedto be observed down to 9 Hz. Five runs are launched with the sameparameterization

as the inversion of �gure 4.7. This parameterization contains very little prior information as

reported by table 4.3. The majorit y of the models generatedby the neighbourhood algorithm

insidethis parameterspacehave a Vs below 1500m/s down to 120m which cangive the illusion

that the inversion with the �rst high mode really o�ers a better constraint. But three other

inversions(two with the parametersof table 5.1 and one with table 5.2) are also run to force

the generationof models with a high Vs at shallow depths. The results displayed in �gure 5.5

gather all the models of the eight runs. Comparing with �gure 4.7, it clearly shows that the

�rst higher mode doesnot provide any special information about deeper layers, becauseit is

possibleto �nd modelswith a very good mis�t having almost any Vs valuesbelow 10 or 15 m.

The samecomposite dispersioncurve is also inverted with a prior depth information like in

the inversionshown in �gure 4.10(not shown here). There is no signi�cant improvement of the

solution induced by the useof the �rst higher mode.
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Figure 5.5: Inversionof the fundamental and the �rst higher mode: narrow band. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gures (a) and (b). The grey curvesare the calculated fundamental mode (lowest curves) and the
�rst higher mode (highest curves). The black dots are the theoretical dispersion curvesusedas the target curve
during inversion

Conclusions

In theory, combining the fundamental mode with the �rst higher mode results in Vs and Vp

pro�les better de�ned over the whole soil column. The in
uence of the �rst higher mode in

the inversion is probably more complex than the conclusionsof Xia et al. (2003). In our

tests, the �rst higher mode alone better constrains the velocity of the intermediate layer and

the depth of the basement than the fundamental mode even de�ned on a very wide frequency

range. However, the velocity of the half spacebasement is better retrievedwith the fundamental

mode.
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In a real case,the limited rangeof the available dispersioncurvesruins all positive aspects

of the inclusion of the �rst higher mode. Redundancyof both curves(above 5 Hz in this case)

just allows a cross-check of the results found with the fundamental curve alone.

5.1.2 Love and Rayleigh

From the above results, it can be seenthat the measurement of the dispersion curve down to

low frequenciesis the only way of improving the penetration depth of the method. This issueis

documented in chapter 2 for the the Rayleigh dispersioncurve. An exampleof a joint dispersion

curve inversionwith the low frequencybeingof Love type is shown. The Rayleigh fundamental

dispersioncurve is supposedto be available from 5.5 to 15 Hz. The Love fundamental curve is

assumedto be observed between1 and 5 Hz.

Run index it max ns nr parameterization number of models
1 to 5 150 100 100 table 4.3 5*15100
5 to 10 100 100 50 table 4.3 5*10100

11 100 100 50 table 4.3 with
Vp1 2 [1600; 2000]
Vs1 2 [1040; 1414]

10100

12 100 100 50 table 4.3 with z2 2 [120; 160] 10100

Table 5.3: Inversion runs for Love-Rayleigh dispersion curves.

Twelve joint inversionprocessesare launched with distinct seedsand their resultsare gath-

ered in �gure 5.6. The parametersof the neighbourhood algorithm and the parameterization

are described in table 5.3. The last two runs (11 and 12) are designedto force the search in

particular zonesof the parameterspaceand to make sure that no model with a low mis�t can

be found there. Comparing with �gure 4.6, inverting without the low frequencypart of the

Rayleigh dispersiondoesnot alter the �nal result. Even more, the Love dispersioncurve allows

the retrieval of Vp and Vs pro�les with a lower uncertainty. Though the Love dispersioncurve

has no direct relationship with the Vp pro�le, its inversion with the high frequencyRayleigh

dispersioncurvesimprovesthe de�nition of Vp even for deeplayerscomparedto Rayleigh alone

inversions(�gure 4.7). This issueis out of the scope of this work.

In conclusionto this brief example,inversionof low frequencyLovedispersioncurve together

with higher frequencyRayleigh dispersioncurve is a promising solution to deepen the penetra-

tion limits of an ambient vibration experiment. However, theseinteresting results assumethat

the Love dispersioncurve can be determinedwith a su�cien t degreeof con�dence.

5.1.3 Higher mo de iden ti�cation

In sections5.1.1and 5.1.2,the modesare supposedto be correctly identi�ed beforeproceeding

with the inversion. In many real caseswhendealingwith the vertical component, the apparent

dispersion curve with the lowest velocity is usually interpreted as the fundamental mode of

Rayleigh waves. For active sourceexperiments measuredat high frequencies(above 10 Hz),

higher modesmay predominate(Gabriels et al. 1987,Forbriger 2003b,Xia et al. 2003,Socco
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Figure 5.6: Joint inversion of the Love and Rayleigh fundamental modes. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Rayleigh and (d) Love dispersion
curvescorresponding to models of �gures (a) and (b). The black dots are the theoretical dispersion curvesused
as the target curve during inversion.

and Strobbia 2004). For ambient vibrations, which commonly yield dispersion curve at low

frequencies,higher modesare lessstudiedbut their presenceis sometimessuspected. According

to the array resolution power, it is not always possibleto separatemodesand an intermediate

velocity may beobserved. In this last case,no post-processingcanbeconsideredon the observed

apparent velocity valuesbecausethere are too much parametersto play with (array geometry,

sourcedistance, energypartition between co-existing modes, . . . ). A prior knowledgeof the

ground structure or other geophysical acquisitions are necessaryto detect anomalieson the

supposedfundamental dispersioncurve. This caseis not analysedin this section.

For other cases,a bad identi�cation of modesmay ruin all inversionresultsasdemonstrated

by Zhang and Chan (2003) and by the following example. The same soil structure as in

section4.2is usedhere. In �gure 4.1(b), the fundamental and the �rst highermodesfor Rayleigh

wavesare very closeto each other around 9 Hz (osculation point). Dependingon experimental
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conditions, it may bepossibleto selecta branch below 9 Hz corresponding to fundamental mode

and another branch above 9 Hz following the �rst higher mode. This situation is depicted in

�gure 5.7 where the observed apparent velocity is marked by black dots. At �rst glance,the

obtained curve may be interpreted as a single fundamental mode. This curve is inverted as

the fundamental Rayleigh mode with a prior information that the depth of the basement is
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Figure 5.7: Composite dispersion

curve. The black dots represent the dis-

persion as it can be observed. The grey

line are the theoretical dispersion curves

of the fundamental (plain line) and the

�rst higher (dotted line) modes.

situated between95and 105m like in the inversionplotted

in �gure 4.10. The results of �v e runs are summarizedin

�gure 5.8. The black lines in �gures 5.8(a) and 5.8(b) are

the theoretical ground model. The di�erence is especially

strong on the �rst 20 metreswherethe velocity pro�les are

usually well retrieved. There are more than 50%of bias in

the obtained results. For real sites, this phenomenoncan

be detectedonly if external data or a prior knowledgeare

also available. Indeed, there is no argument to reject the

interpretation of �gure 5.8 from the dispersioncurve itself.

If the results of the inversion with the fundamental

Rayleigh mode are far from the expected pro�les, the in-

version with other Rayleigh modescan be tested with an

inversionalgorithm we developed to automatically identify

higher modes. The inversionwith this option requiresonly

one data curve and the assumptionof the number modes

(nm ) that are encountered by the data curve. For each

generatedmodel and for each frequencysampleof the data

curve, nm modes are simultaneously calculated. Compared to usual inversions, the mis�t is

computed in a completely di�erent way. The velocity di�erence (� vi = vdi � vci ) at each fre-

quencybetweenthe data velocity and the theoretical Rayleigh velocities of each mode (up to

nm ) is calculated. Only the minimum value is kept in the summation of equation 3.38. Virtu-

ally, the best �tting mode may be di�erent for each frequencysample. However, thesekinds

of oscillations are rarely observed due to the curve smoothnesswhich naturally restricts the

number of mode changesto one or two on the available frequencyrange. This method e�ec-

tively addsoneor two pseudodegreesof freedomto the inversionproblem and it is sometimes

necessaryto usemore restricted parameterizedmodel.

The inversion method is tested on the dispersion curve displayed in �gure 5.7 with the

assumptionthat two modesmay bepresent in the experimental curve. Testswith morethan two

modeshave not beencarried out so far. The frequencyrangeof the dispersioncurve is similar

to the rangeusedin �gure 4.71 where it is clear that no information below 10 m is recovered.

The parameterization used in �gure 4.10 (table 4.4) o�ers a slightly better constraint and is

chosenfor the inversion with automatic mode identi�cation. The results of the �v e inversion

runs (5*15100models) are gathered in �gure 5.9. In �gure 5.9(c), two modesare plotted for

1The range is extended to 4 Hz in this caseto get larger frequency range for the fundamental mode. Tests
with a limit at 5.5 Hz do not work becausethe velocity rise is not su�cien tly marked.



98 CHAPTER 5. ENHANCED INVERSIONS

0 2500 5000
Vp (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

0 1000 2000 3000
Vs (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

4 6 8 10 20
Frequency (Hz)

400

800

1200

1600

2000

V
el

oc
ity

(m
/s

)

Misfit value
0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060

(a) (b) (c)

Figure 5.8: Inversion of the composite curve assuming fundamental mode. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Fundamental mode dispersion
curvescorresponding to models of �gures (a) and (b). The black dots are the composite dispersion curvesused
as the target curve during inversion.

0 2500 5000
Vp (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

0 1000 2000 3000
Vs (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

4 6 8 10 20
Frequency (Hz)

400

800

1200

1600

2000

V
el

oc
ity

(m
/s

)

Misfit value
0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060

(a) (b) (c)

Figure 5.9: Inversionof the composite curve with mode identi�cation. (a) Resulting Vp pro�les. (b) Resulting
Vs pro�les. The black linesare the theoretical velocity pro�les. (c) Fundamental and �rst higher modedispersion
curvescorresponding to models of �gures (a) and (b). The black dots are the composite dispersion curvesused
as the target curve during inversion.
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Figure 5.10: Inversion of the composite curve with mode identi�cation, splitting model families. (a), (d), (g),
and (j) Resulting Vp pro�les. (b), (e), (h), and (k) Resulting Vs pro�les. The black lines are the theoretical
velocity pro�les. (c), (f ), (i), and (l) Fundamental (below) and �rst higher (above) mode dispersion curves
corresponding to models of the other �gures. The black dots are the composite dispersion curvesused as the
target curve during inversion (seetext for details).
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each model in �gures 5.9(a) and 5.9(b).

Four families of curveswith low mis�t valuescan be distinguished. For clarity, thesefour

categoriesareshown individually in �gure 5.10. In the �rst category(�gures 5.10(a)to 5.10(c)),

the data curve is consideredas being entirely the �rst higher mode. The minimum achieved

mis�t is higher (0.055) than for other groups,but it doesnot automatically meanthat models

are to be discarded. Valid arguments to reject them would be that super�cial measurements

revealeda lower Vs or that a strong contrast between40and 60m is not geologicallyadmissible.

The secondcategory is the sameas our �rst hypothese(all data consideredas fundamental

mode). Lower mis�t values are obtained (0.025). Here again, complementary acquisitions

about the super�cial Vs or depth criteria help to discard those models. In the third family of

models, the data curves is also likened to �rst higher mode but in a di�erent way than the

�rst category. Here the di�erence with the theoretical model in terms of Vs and depth is more

subtile. The measurement of the dispersion curve on a larger frequencyband, for instance if

Love modes can be observed, may help the interpretation. And �nally in the last category,

a mode jump is noticed around 9 Hz and the velocity pro�les correspond to the theoretical

ground model. The parameter spacesampling is certainly not exhaustive for depth below

100 m. Further model generationcan be conducted with a shallow depth restricted around

10 m to get a more complete and con�rmed model uncertainty (not done here). Tests were

conducted with the parameterization of table 4.3 but nothing could be retrieved due to the

insu�cien t level of constraint.

This algorithm allows a great 
exibilit y to scanthe variousmodespossiblycontained in the

observed dispersion curve. However, it adds at least one more degreeof freedom, increasing

then the non-uniquenessof the problem. The prior information are here,probably more than

elsewhere,of prime importance to selectthe right model family.

Exactly the sametechniquehasalsobeentestedon synthetics to identify Love and Rayleigh

modes(not shown here).

5.2 Spatial auto-correlation

In section 3.3, it is shown that auto-correlation curves are theoretically calculated from the

dispersion curves. Classically, obtaining the Vs pro�le at one site is a two-stageprocessing:

derivation of the dispersioncurve from the auto-correlation curveswith a least-squarescheme

(e.g. Bettig et al. 2001) and inversion of the dispersion curve to determine the Vs pro�le.

Recently, Asten et al. (2004) proposedto mergethem into a single inversion basedon least-

squareoptimisation (Herrmann 1994), allowing the determination of Vs(z) directly from the

auto-correlation curves. The approach proposedhere is conceptually the sameexcept that

we make use of the neighbourhood algorithm (section 2.3) for the inversion. It allows an

exploration of nearly all equivalent minima in terms of the mis�t function and thus enables

additionally an improved uncertainty analysiswhen comparedto classicallinearized inversion

schemes(least-squares). Shapiro (1996) showed, that the solutions obtained from classical
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surfacewave inversionschemesare too restrictive and uncertainties arenot correctly estimated.

The text and the �gures of this section are extracted from a paper we submitted to the

Bulletin of SeismologicalSociety of America in October 2004. This is why the referencemodel

utilized herebelow di�ers from the oneusedin other sections.

5.2.1 Uniqueness of auto-correlation curv es

The auto-correlationinversionhasbasicallythe samelimits asthe dispersioncurve inversion,as

auto-correlationcurvesarecalculatedfrom dispersioncurves: non-uniqueness,lossof resolution

with depth and equivalencefor pro�les with low velocity zones. As we plan to invert auto-

correlation curvesto obtain Vs pro�les, we �rst addressthe questionof the relationship between

auto-correlation and dispersion curves. Obviously, equation (3.47) does not insure a one-to-

one relation betweenthe two typesof curves,as the arguments for J0(x) that satisfy equation

(3.47) can be numerousfor small valuesof � (r; ! ). However, equation (3.47) does not imply

any coupling of c(! ) with the auto-correlation at other frequenciesthan ! , meaningthat the

inversioncanbemadeindependently frequencyby frequency. Consequently, transforming auto-

correlation curvesat frequency! into their equivalent commondispersioncurve is just a matter

of solving a systemof equationsof the sameform as (3.47) (one equation by consideredring)

and solutionsc(! ) are discretenumbers. If all the auto-correlationcurvesfor the di�erent rings

are consistent with each other, there is a minimum of onesolution that satis�es all apertures.

From the discretenature of the solutionsand the number of rings likely to be considered,there

is little chanceof having two distinct solutions for c(! ) that perfectly match all equations.

5.2.2 Synthetic mo del

The inversion method is �rst applied on a perfect synthetic model de�ned by a sedimentary

layer overlying a rocky basement. Vs and Vp valuesinside the two layers are plotted on �gure

5.11(a)and 5.11(b) (black lines). We set up a 100m aperture array with a quasi-circularshape

characteristics of which are given in �gure 3.24(a). From the azimuth-distance plot of �gure

3.24(b), we selected�v e distinct rings including 7 to 12 station pairs each, with an averageof

ten. The limits of rings are arbitrary chosen. Parametric tests show that the �nal results are

very little dependent on the ring selection.We introduceuncertainties into the original model

assuminga normal distribution around the averagemodel (black plain lines, �gures 5.11(a)

and 5.11(b)) with the standard deviation shown by dotted lines in the same�gure. Theoretical

auto-correlation ratios were computed for 5000randomly generatedmodels, keepingPoisson's

ratio constant. Auto-correlation curves for the �v e rings are regularly distributed around the

onescomputed for the averagemodel (black dots of �gures 5.11(d) to 5.11(h)).

5.2.3 Validation of auto-correlations

The measuredauto-correlation curvesdo not always �t the shape of Bessel'sfunction and the

systemof auto-correlationequations(of type (3.47) or (3.48)) may have no commonsolution for
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Figure 5.11: Referencemodel for auto-correlation inversion. (a) Vp pro�les: input averagemodel (plain line),
input standard deviations (dotted lines) and generatedrandom models ranked by their auto-correlation mis�t
(common grey scale). (b) Vs Pro�les: samelegend as for Vp. (c) Dispersion curves of random models for the
fundamental mode of Rayleigh. (d) to (h) Auto-correlation ratios for chosenrings plotted against frequency,
averageand standard deviation for all samples(dots).

all array apertures. Feedingthe inversionprocesswith contradictory auto-correlation curvesis

likely to give an uncontrolled averagesolution. If the contradiction comesfrom a defect in the

array response(e.g. too wide aperture for the consideredwavelength) or in the noisecontent

(e.g. uncorrelatednoisedue to long distancebetweensensorsfor the consideredfrequency, or

insu�cien t energylevel at low frequency), the probability of obtaining an unrealistic solution

is high. A selectionof the relevant parts of the auto-correlation curves is thus necessary. The

problem is complexand there are no objective and commonlyapplicablerules. Without a prior

knowledgeof the soil structure, the only reliable featuresare the array geometryand the auto-

correlation curves themselves. From the array geometry, somerough limits can be deduced

for a correct responsein terms of wavenumber (Woods and Lintz 1973,Asten and Henstridge

1984), theoretically for the frequency-wavenumber processingonly (section 1.1.1 on page7).

On the other hand, from the auto-correlation curves for the di�erent rings, we can test the

consistencyof the systemof equations,and discard the samplesthat are obviously out of the

generaltrend.

Practically, from a very large a priori in terms of apparent velocity (e.g. from 100 to 3000
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m/s), all possiblesolutions c(! ) of equation (3.47) or (3.48) are calculated independently for

each ring. For doing so, we de�ne the function:

g(c;! ) = � calc(r; ! ; c) � � obs(r; ! ) (5.1)

where,! is the consideredfrequencyband, � calc is calculatedby equation (3.47) or (3.48), and

� obs is the auto-correlationratio calculatedon the recordedsignals.The roots of function g(c;! )

are successively bracketed by a coarsegrid search starting from the lowest velocity, and then

re�ned by an iterativ e schemebasedon the Lagrangepolynomial constructedby the Neville's

method (Presset al. 1992). The samealgorithm as for the internal computation of dispersion

curves is used (section 3.1.5). In a secondstage, we construct a grid for each ring in the

frequency-slownessdomain. The grid cellsare �lled with 1 if at least onesolution existswithin

the cell, with 0 in the contrary case.All the grids arestacked and the valuesin each cell give the
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Figure 5.12: Grids in frequency-slowness domain

representing the density of dispersion curve solutions.

(a) Solutions of equation (3.48) for the perfect auto-

correlation curves of �gure 5.11. The theoretical dis-

persion curve is represented by a plain line.

number of consistent rings for a particular cou-

ple frequency-slowness. If the auto-correlation

curves are consistent, the cells where the den-

sity of solutions is maximum should delineate

the corresponding dispersioncurve. From this

plot, we determinethe minimum and the max-

imum slownessfor each frequency, as well as

the minimum and the maximum wavenum-

ber for which we observe a focuseddispersion

curve. To reduce the subjectivit y of the se-

lection, zoneswhere no clear consistencybe-

tween auto-correlation curves is observed are

systematically rejected. Once the dispersion

curve limits are set, it is straightforward to

reject the contradictory data on the auto-

correlation curves. This procedureis tested on

the pure synthetic case(�gure 5.11) where no

contradictory samplesare present in the auto-

correlation curves. Figure 5.12 shows the re-

sulting frequency-slownessgrid obtained after

seekingfor all possiblesolutions. The disper-

sion curve can be entirely retrieved from the

auto-correlation curves between 1 and 10 Hz. When the auto-correlation value is less than

0.025(arbitrary threshold to avoid an in�nite number of solutions), no solution is calculated.

This is why, for high frequency, the large apertures provide no points and hencethe density

vanishesto oneor two occurrencesonly.
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5.2.4 In version

A two-layer model is consideredwith the parameterrangesspeci�ed in table 5.4. In the shallow

layer, the velocity canincreasewith a power law relation, and the parametersarefour (Vp, Vs=Vp,

the thicknessand the Vp increasebetweenthe top and the bottom). The constant velocity layer

corresponding to the true model is a particular realizationof the parameterization. The bedrock

parametersare two (Vp increase,and Vs=Vp). The neighbourhood algorithm has beenstarted

using 3 independent runs with distinct random seeds,generating a total of 30,000models.

Among them about 13,500have a mis�t lessthan 1 and are plotted in �gure 5.13. The lowest

mis�t is 0.03.

Layer Thickness Vp Vs=Vp Density Vp variation
Sediments 10 to 50 m 200to 2,000m/s 0.01to 0.707 2 t/m3 10 to 1,000m/s
Half-space { +10 to 3,000m/s 0.01to 0.707 2 t/m3 {

Table 5.4: Parameters for auto-correlation inversion. The \+" sign stands for incremental velocity: the
parameter is the velocity gap between the �rst and the secondlayer. The power law gradient acrossthe �rst
layer is represented by a stack of 5 sub-layers. The value of the parameter is the total velocity variation across
the layer.

The Vs and Vp models resulting from the auto-correlation inversion are plotted in �gures

5.13(a) and 5.13(b) with their mis�t value. On these�gures, is drawn the theoretical model of

�gure 5.11. Most of the solutionswith a mis�t lower than 0.4areable to explain in a consistent

way the auto-correlation data given their standard deviations (�gures 5.13(a)and 5.13(b)). In

�gure 5.13(c) are plotted the corresponding dispersion curves. The Vs pro�le (�gure 5.13(b))

is very well constrainedfrom 6 to 20 metresdeep. The very super�cial layers (lessthan 6 m)

are at a depth lower than one third of the minimum wave length (20 m) and Vs values are

lessconstrained,resulting from the limited bandwidth at high frequency. Below 35 metre, Vs

valuesare well retrieved due to the wide low frequencyrangeof the auto-correlation curves. In

real data, this well constrainedvelocity in the bedrock is usually missingdue to the site high-

pass �lter of the Rayleigh waves below the fundamental frequency (Scherbaum et al. 2003,

chapter 6). The dispersioncurvescomputedfor the best �tting modelscomparevery well with

the theoretical one (�gures 5.11(c) and 5.13(c)). The resolution is relatively poor between22

m and 35 m: a velocity jump at 22 metres gives a mis�t value equivalent to the one for a

contrast at 35 metres. Other inversion tests (not presented here) have shown that this lack of

resolution results from the uncertainties consideredon the auto-correlation data. However, the

lowest mis�t model correctly �nds an interfacearound 25 m depth.

Usually, Vp has a low in
uence on the dispersion curve, and henceon the auto-correlation

curves. Boore and Toks•oz (1969) proved for a �v e-layer model that the in
uence of Vp on the

dispersion curve is about one tenth the in
uence of Vs. However, for low Poisson'sratios, Vp

hasmore in
uence. In this latter situation, the �nal Vs pro�le dependsupon the correctnessof

the Vp pro�le. In classicaliterativ e inversions(least-squarescheme),Vs=Vp or Poisson'sratio is

kept constant becausethe small in
uence of Vp on the auto-correlation curvesgenerally leads

to unrealistic velocities. For the neighbourhood algorithm inversions,the parameterization is
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Figure 5.13: Inversion of the auto-correlation curves. (a) Vp pro�les: true averagemodel (plain line), true
standard deviations (dotted lines) and inverted models ranked by their auto-correlation mis�t (common grey
scale). (b) Vs Pro�les: same legend as for Vp. (c) Dispersion curves of generatedmodels. (d) to (h) Auto-
correlation ratios for chosenrings plotted against frequency, averageand standard deviation of data points to
be �tted (dots).

easily adjusted to �t the physical limits of Vp and the prior information, for instance, about

the super�cial valuesof Vp. When no information are available about Vp, it is still usedas a

parameter with large prior intervals to prevent from altering the �nal result with unreliable

assumptions.For this inversiontest, we assumedthat no prior information exist on Vp. As the

Poisson'sratio for the theoretical model is 0.49, the compressional-wave velocity (Vp) pro�le is

badly recovered. Equivalent models are found for the whole prior Vp range(from 200 to 2000

m/s in the upper layer).
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5.3 Ellipticit y inversion
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Figure 5.14: Inversionof the ellipticit y alone

showing the trade-o� betweenthe depth of the

velocity contrast and Vs .

The principles and the solutionsdeveloped for the in-

versionof the Rayleigh ellipticit y are discussedin sec-

tion 3.2. The ellipticit y shown in �gure 4.1(d) is �rst

inverted alonewith a simple model madeof one layer

overlaying an in�nite half-space.The shape of the el-

lipticit y curvesis not inverted but only the frequency

of peak, which is exactly found at 5.63 Hz. The sec-

ondary peak at 3 Hz is not consideredhere. It is not

possibleto retrieve a completeground structure only

from the frequencyof the ellipticit y peak. Hence,a

model with only two parameters(thicknessand Vs0)

is used in the inversion, detailed in table 5.5. The

Vs=Vp value in the half spaceis �xed to ensurea con-

stant Vs of 1000 m/s. Five runs are launched with

ten iterations each generatinga total of 5500models.

The minimum mis�t achieved is 0, becauseonly one

singlefrequencyis �t with a precisionof 10� 3 Hz. The

results are shown in �gure 5.14. A clear relationship

betweenthe thicknessand Vs0 is found corroborating

the conclusionsof Scherbaumet al. (2003)about the inversionof the frequencyof the ellipticit y

peak for a two-layer model. The theoretical model hasa z1 of 10 m and Vs0 is 200m/s.

Layer Thickness Vp Vs=Vp Density
Sediments 1 to 50 m 375m/s 0.01to 0.707 2 t/m3
Half-space { 1750m/s 0.57143 2 t/m3

Table 5.5: Parametersfor ellipticit y alone inversion.

The last example con�rmed that the frequencyof the ellipticit y peak contains pertinent

information about the thicknessand the shearvelocity of the �rst layer. The ellipticit y target

is then addedto a usualdispersioncurve inversionto test its abilit y to improvethe �nal solution.

The caseof a narrow frequencyband and a two-layer parameterization inverted in �gure 4.5

is utilized again. As detailed in section3.2, the mis�t is calculated by a weighted sum of the

dispersion and the ellipticit y mis�ts. 10 and 90 % weights were chosenfor the dispersionand

the ellipticit y mis�ts, respectively. This ensuresthat nearly all generatedmodel are complying

with an ellipticit y peak at 5.63 Hz. Consequently, to achieve a comparablegood �t of the

dispersioncurve as in �gure 4.5, the mis�t scaleis divided by 10. Five runs are launched with

the parametersdescribed in table 4.2. To make sure that the parameter spaceis su�cien tly

sampledin terms of z1 (depth of the top of the half space),two more inversion processesare

started with the depth restricted to [8; 10] m and [11; 14] m, respectively. The ensemble of all

modelswith a mis�t lessthan 0.01 is plotted in �gure 5.15.
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Figure 5.15: Join inversion of the dispersion curve and the ellipticit y peak. (a) Resulting Vp pro�les. (b)
Resulting Vs pro�les. The black lines are the theoretical velocity pro�les. (c) Dispersion curvescorresponding
to models of �gures (a) and (b). The black dots are the theoretical dispersion curvesusedas the target curve
during inversion. (d) Ellipticit y curves calculated for models of �gures (a) and (b). The black dots are the
theoretical ellipticit y curve but only the frequencyof the main peak is usedas the inversion target.

Comparedto �gure 4.5, the posterior error obtained for the depth of the basement interface

is greatly reduced.According to the level of con�denceput into the dispersioncurve, the depth

is known with a one-metreprecision whereasthe uncertainty in �gure 4.5 is much greater.

However the velocity in deeper layer is not retrieved as in the �rst inversion. Tests were

also conductedwith a three-layer parameterization but no signi�cant improvement has been

observed. Other inversionscould have been started with the low frequency secondarypeak

appearing in �gure 4.1(d) at 3 Hz, but there are few chancesfor this peak to be detectedwith

a real experiment.
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Chapter 6

Test cases

In the precedingchapters, a 
exible and powerful algorithm is developed for the inversion of

dispersioncurves. Its capabilities have beenproved in the caseof noiselessdata curves. In this

chapter, the dispersion curves (or the auto-correlation curves) are retrieved from a synthetic

and a real wave�eld with the techniquesdescribed in chapter 1 and they are inverted. Even for

noisy observables,the inversion tool revealsitself as an e�cien t way to infer the soil structure

together with its global uncertainty.

A specialattention is paid to the interpretation of multiple array geometries.The advantages

and the drawbacks of each method and each con�guration are exploited to developed robust

guidelinesfor the interpretation of real measurements.

6.1 Synthetic ambien t vibrations

In this section,the recordedsignalsaresimulated with the method developed by Hisada(1994).

The theoretical model is described hereafter. Then, the signalsare processedwith the methods

detailed in chapter 1.

6.1.1 Mo del description

The synthetic ground model is composedof a soil layer with a thicknessof 25 m overlying

an in�nite bedrock. The properties of each layer are speci�ed in table 6.1. The theoretical

Thickness Vp Vs Density Qp Qs

25 m 1350m/s 200m/s 1.9 t/m 3 50 25
{ 2000m/s 1000m/s 2.5 t/m 3 100 50

Table 6.1: Properties of the referencemodel.

Rayleigh dispersioncurves(the fundamental and the �rst four higher modesin the caseof an

elastic media) for this model are shown in �gure 6.1(a) between1 and 15 Hz. For frequencies

below 15 Hz, only the �rst �v e modes are present and appear to be well separatedin terms

of velocity. Figure 6.1(b) shows the fundamental ellipticit y and the SH transfer function. The

109
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fundamental resonancefrequency is 2 Hz while the peak of the fundamental ellipticit y is at

1.9 Hz. This frequencydi�erence, recently studied by Malischewsky and Scherbaum (2004),

is mainly in
uenced by the magnitude of the velocity contrast betweenthe sediments and the

bedrock.
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Figure 6.1: Theoretical model for synthetic ambient vibrations. (a) Dispersion curves for Rayleigh modes
calculated with the synthetic model: fundamental model (thick plain line), �rst (thick dashed line), second
(thin plain line), third (thin dashedline), and fourth higher mode (thin dotted line). Other modesdo not exist
in the plotted range. (b) Theoretical SH transfer function for the synthetic model (plain line) and fundamental
Rayleigh ellipticit y curve (dotted line).
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Figure 6.2: Spectral curvesof the central station of array A to C. The plain line is the averageand the dashed
lines are located at one standard deviation. (a) Amplitude spectrum of the vertical component. (b) Amplitude
spectrum of one horizontal component. (c) Spectral ratio Horizontal to Vertical (H/V). Grey bands indicate
the averageand standard deviation of the frequencypeak valuesobserved for each individual time window.

Synthetic ambient vibrations have beencomputedduring 6 minutes using the method pro-

posedby Hisada (1994 and 1995), and Bonnefoy-Claudet et al. (2004) which is valid for a

one-dimensionalmodel with sourcesand receivers placedat any depth. This dataset includes

333 sourcepoints randomly distributed from 140 to 750 m from the central receiver. Sources

are punctual forceswith delta-like functions of random amplitudes and directions. All typesof

wavesexisting in such media are modelled generatinga wave �eld containing body, Love and

Rayleigh waves. The frequencyspectrum of generatedwaves is limited to 15 Hz in order to

reduceCPU time. The spectra of the vertical (V) and one horizontal (H) component of the
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central station is shown in �gure 6.2(a) and 6.2(b), aswell asthe H over V ratio (�gure 6.2(c)).

The frequencyof the H/V peak(2 Hz) matchesthe resonancefrequencyof the soft layer (�gure

6.1(b)). The Fourier spectra show that the energyof the vertical component vanishesin the

vicinit y of and below the fundamental frequencyasreported by Scherbaumet al. (2003),while

the energyon the horizontal component decreasesbelow 1.5 Hz.
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Figure 6.3: Array geometriesand their f-k responses. (a), (d) and (g) Geometriesof arrays for arrays A, B,
and C, respectively. (b), (e) and (h) Their corresponding theoretical frequency-wavenumber responses. The
circles correspond to the chosenwavenumber limits detailed in table 6.2. (c), (f ) and (i) Sectionsacrossseveral
azimuths for the theoretical frequency-wavenumber grids of arrays A, B, and C, respectively. The black curve
is oriented along the line drawn in �gures (b), (e) and (h).

On this model we set up three arrays (labelled A, B and C) the geometriesof which are

plotted in �gures 6.3(a), 6.3(c) and 6.3(e), respectively. Array A is composedof nine sensors

roughly distributed around a central sensor,with an approximate aperture of 25 metres. Array

B is made of three triangles approximately rotated by 40� and with increasingaperture up

to 90 metres. Finally, array C is made of nine sensorsroughly distributed around a central

sensor,with an approximate aperture of 100metres. Theoretical f-k responses(section1.1.1on
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Array name Min. dist. Max. dist. kmin kmax f min f max

A 8 m 25 m 0.095 1.50 4.4 � 15.0
B 13 m 87 m 0.037 0.495 3.25 7.6
C 34 m 99 m 0.024 0.39 3.0 7.2

Table 6.2: Properties of the array geometries. For each array the minimum and maximum distance between
sensors. The minimum and maximum wavenumbers deduced from the theoretical frequency-wavenumber re-
sponsesin �gures 6.3(b), 6.3(e) and 6.3(h). Also the minimum and maximum frequenciescorresponding to
those wavenumbers (Hz).

page7) for arrays A, B, and C are shown in �gures 6.3(b), 6.3(d) and 6.3(f), respectively. The

resolution and aliasing limits deducedfrom Woods and Lintz (1973)and Asten and Henstridge

(1984)criteria are marked by circlesand aresummarizedin table 6.2. Sectionsare madeacross

each of them alongseveral azimuths (628) and they are plotted by grey curvesin �gures 6.3(c),

6.3(e) and 6.3(g). The bold black curvescorrespond to the minimum aliasing azimuths which

are marked by black lines in �gures 6.3(b), (d) and (f ). From equation (1.2), a wave travelling

at kmax appearsin the semblancemap with the main peak right on the aliasing limit and the

lateral aliasing peaksgreater than 0.5 are located on a circle crossingthe origin. In the case

of a complex wave�eld with waves travelling in several directions, there are lot of chancesto

confusethe true peak with sums of secondaryaliasing peaks that do not correspond to the

correct apparent velocity. Hence,a safeapproach would be to limit the valid rangeto kmax =2,

which is illustrated by the results of the next sections.

6.1.2 Single source wave�eld

The f-k method is �rst applied to a wave�eld produced by a single source of the afore-

mentioned dataset, situated at about 650 m (310� counted clockwise from the North or Y

36 s 40 s 44 s 48 s
Time

S01B Z
S02B Z
S03A Z
S04B Z
S05B Z
S06A Z
S07B Z
S08B Z
S09A Z
S10A Z

Figure 6.4: Single source wave�eld measuredby

the vertical sensorsof array B.

axis) from the centre of arrays A, B and C. The

source is punctual with a force vector oriented

along direction 293� and inclined at 50� from the

vertical axis. From its orientation and its posi-

tion far from the arrays, Rayleigh wavesare sup-

posedto be mainly recorded. The signalscom-

puted at the ten receivers of array B are shown

in �gure 6.4. Their energyis spreadover a 6 sec-

ond period for a total calculatedduration of 360

seconds.

The array response is calculated for single

windows of varying durations: 20 s, 6 s, and 3 s,

all centred around the most energeticpart of the

signal. The velocity at the semblance maximum

is plot for all frequencybands in �gures 6.5(a) to 6.5(c), for the duration 20 s, 6 s and 3 s,

respectively. The theoretical dispersion curves (the fundamental and the �rst three higher
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modes)are plotted on the samegraphsfor comparison.The validit y curvesare drawn at con-

stant kmin (plain lines), kmax =2(dotted lines) and kmax (dashedlines). For the long time window,

the velocity determination is nearly perfect for the whole frequencyrangeexcept below 2 Hz,

which corresponds to 40 cycles(20 s times 2 Hz). When decreasingthe time length of the

processedsignal, the dispersioncurve quality is degradingat low frequency. We de�ne a mini-

mum threshold frequencyin each caseindicating where the calculated dispersion curve leaves

the theoretical curve. For the six-secondwindow this threshold frequencyis around 2.5 Hz (15

cycles)and around 5 Hz (15 cycles) for the three-secondcase. Comparing to the responseof

the arrays A and C, �gures 6.6(a) and 6.6(b), respectively (six-secondtime window), it can

be observed that the limit of 2.5 Hz is independent of the array aperture or array geometry.

Array A providesa correct velocity estimation, though being far outside the valid wavenumber

range. This frequencylimit is linked to the energycontent of the vertical spectrum shown in

�gure 6.2(a) as reported by Scherbaum et al. (2003).
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Figure 6.5: Frequency-wavenumber analysis for array B with various time windows: (a) 20 s., (b) 6 s., and
(c) 3 s. For each plot, the thin lines are the theoretical dispersion curves for the original ground model (�rst
modal curvesof �gure 6.1). The three exponential curvesrepresent constant wavenumber curvesvaluesof which
are deducedfrom theoretical frequency-wavenumber response(�gure 6.3): minimum (continuous line), half the
maximum (dots) and maximum wavenumber (dashed).

The calculated curves in �gures 6.5(b), 6.5(c), 6.6(a) and 6.6(b) show at least two major

defects:onelocated at 4 Hz wherethe velocity increaseis not retrieved and the other between

6 and 9 Hz, especially obvious for array A. The �rst one is not present on the 20 s. results

(�gure 6.5(a)), proving that the choiceof a long enoughwindow is crucial to correctly process

the signals. The seconddefectmay be investigatedby examiningthe responsesof arrays A and

B in the plane (kx ; ky) (�gures 6.7(a) and 6.7(b)). Below 6 Hz (not shown here) the shape of

the array responseis quite similar to the theoretical response,supporting the assumptionof a

singledominant surfacewave. Above 6 Hz, the generalshape is changing with the apparition

of a secondarymain peak at higher velocity, as shown by �gure 6.7 (calculated at 6.5 Hz).

Becauseof its relative low resolution limit ([kmin ]B < [kmin ]A ), array A cannot distinguish the

two peaks and the exact position of the fundamental peak is shifted erroneouslytowards a

higher velocity. This explains the velocity bump on the dispersioncurve of �gure 6.6(a).

The signal processingshows that the simulated vibrations are mostly composedof surface

wave which dispersioncurve is perfectly retrieved in �gure 6.5(a) above 2.5 Hz. Wavestravel-
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Figure 6.6: Frequency-wavenumber analysisfor ar-
rays A and C in �gures (a) and (b), respectively. The
window length is 6 seconds.
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Figure 6.7: Array responsesfor arrays A and B in
�gures (a) and (b), respectively, calculatedat 6.5 Hz.

ling at a higher velocity are detectedbetween6 and 9 Hz (�gures 6.6(a) and 6.7(b)), probably

corresponding to the �rst higher mode. Comparisonof arrays with di�erent resolving power

allows the rejection of non trusted samples.The parametersof the signal processing,particu-

larly the choiceof a too short time window, may introduceundesirablee�ect on the dispersion

curve construction. The results obtained with a singlesourcesuggestthe useof windows of at

least 15 to 40 periods. In the following, a complexwave�eld is analysedby the meansof three

processingtechniques(frequency-wavenumber, high resolution and auto-correlation methods).

6.1.3 Frequency-w avenum ber metho d

The contributions of 333 sourcessimilar to the one analysedin the last section are summed

together to simulate ambient vibrations. To estimate the uncertainty on the apparent velocity

determination, the whole signalsare split in several smaller time windows for which the array

responsesare computed. For each time window, the velocity of the semblancepeak is searched

for wavenumbersbelow 1.5 rad/m and for velocities between150and 2000m/s. From a coarse

griding in the wavenumber plane, the vector (kx ; ky) of the highest peak is iterativ ely re�ned

to an arbitrary small precision. Thus, for each frequencyband, an histogram of the velocities

at the observed maxima is constructed (e.g. �gure 6.8(a) for array C and 10 cycles). The

areasbelow the histogramsare normalizedto one in the slownessdomain, explaining the high

valuesfor the probability density functions. The curvesin �gure 6.8(c) are sectionsacrossthe

histogramsof �gures 6.8(a) and 6.8(b) at 3 Hz.

The in
uence of the window length is �rst checked by calculating the histogramsfor time

windows containing 10 and 50 cycles(�gures 6.8(a) and 6.8(b), respectively) for array C. The

theoretical dispersioncurvesarerepresented by the three thin plain lines. The threeexponential

curves(validit y curves)represent constant wavenumber curvesvaluesof which correspond to the

deducedkmin (continuous line) and kmax (dashedline). The dotted line is situated at kmax =2.

In �gure 6.8(a), the averagedeviatesfrom the theoretical dispersioncurve with a constant bias

of 50 or 100 m/s towards lower velocity, whereasall the velocity estimatesare closer to the
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Figure 6.8: Comparison of frequency-wavenumber analysis for array C, in
uence of the time window length.
(a) Histograms of velocities with a maximum f semblance obtained with time windows of 10 cycles. (b) Same
processingwith time windows of 50 cycles. (c) Crosssection at 3 Hz, of the histograms of �gures (a) and (b),
shown by dotted and plain lines, respectively. The curvesare of the sametypesas in �gure 6.5.

theoretical curve and the standard deviations are much smaller for the 50-cyclecase(�gure

6.8(b)). Both casesare calculated with the sameduration of signals (six minutes), resulting

in �v e times more windows in the 10-cyclecase. To test the robustnessof the statistics, one

minute and 12 secondsof signalsare alsoprocessedwith time windows of 10 cycles,containing

the samenumber of time windows as in the 50-cyclecasecalculated with the six minutes of

signals. The obtained histograms are the sameas in �gure 6.8(a). Hence, with short time

windows, increasingthe number of samplesneither reducesthe gap to the theoretical curve nor

the sizeof resulting error bars.

A similar processingis applied to the signalsof arrays A and B (six minutes of signalsand

time windows of 50 cycles). The velocity histogramsof arrays A, B and C can be comparedin

�gures 6.9(a), 6.9(b) and 6.8(b), respectively. The validit y curvesof constant wavenumber are

drawn in the sameway as in �gure 6.8. For all arrays, kmin is clearly linked to the point where

the velocity estimatesstrongly deviatefrom the theoretical dispersioncurveshown with the thin

black lines. In �gure 6.8(b), bad estimations of velocity due to aliasing take place e�ectively

between kmax =2 and kmax . A similar conclusion could be drawn for array B, where errors

towards low velocity slightly increaseabove kmax =2. Due to the limited available frequency

range,the aliasing e�ect cannot be observed for array A. Betweenthe limits kmin and kmax =2,

arrays B and C exhibit correct velocity estimates.For array A, the measuredvelocity is slightly

above the theoretical Rayleigh velocity with a velocity bump between6 and 9 Hz similar to the
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oneof �gure 6.6(a). For each array, an averageand a standard deviation is calculatedbetween

kmin and kmax =2 basedon the histograms of �gures 6.8(b) and 6.9. The three curves are

averagedtaking into account the respective weights (number of time windows) to construct the

�nal dispersioncurve plotted in �gure 6.10. The measureddispersionis reliable for frequencies

above 3 Hz. This limit is linked to the array sizesbut alsoto the dramatic decreaseof the noise

vertical component amplitude closeto the fundamental resonancefrequency(2 Hz).
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Figure 6.9: Results of the frequency-wavenumber
method applied to arrays A (a) and B (b) with time
windows including 50 cyclesas in �gure 6.8(b). The
histograms are of the sametype as at �gure 6.5, the
curves as well. Wavenumber limits correspond to
each array geometry.
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Figure 6.10: Averageand standard deviations (ver-
tical bars) of apparent dispersion curve from arrays
A, B and C. The thin lines are the theoretical dis-
persion curvesfor the original ground model.

The obtained dispersion curve is inverted with �v e distinct runs of the neighbourhood

algorithm, generatinga total of 50,000models. The parameterizedmodel consistsof a sediment

layer the wave velocity of which increaseswith depth accordingto a power law, and a half-space

at the base. The parametersare six: Vp and Vs=Vp in the two layers, the layer thicknessand

the Vp increasebetween the top and the bottom of the sediment layer. Figure 6.11(a) and

6.11(b) show the velocity pro�les obtained for Vp and Vs, respectively, for all models�tting the

dispersioncurve with a mis�t lower than one. The mis�t function is de�ned by equation(3.38).

The dispersioncurvescorresponding to the mis�t threshold of oneare plotted in �gure 6.11(c).

Dispersioncurve inversion leadsto a good de�nition of the Vs pro�le for the �rst 25 m. Below

this depth, a large rangeof velocity valuesmay explain the measureddispersioncurve, due to
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the lack of information at low frequency. Vp pro�le is very poorly constrainedby the inversion,

as Vp valuesin the layers have very little in
uence on the dispersion curve for high Poisson's

ratio values(section 3.1.8).
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Figure 6.11: Results from inversionof the dispersion curve obtained with the frequency-wavenumber method.
(a) Vp, (b) Vs of generatedmodels and (c) corresponding dispersion curves. The dots and error bars represent
the experimental dispersion curvesto which the calculated dispersion curvesare compared. The black lines of
�gures (a) and (b) are the velocity pro�les of the true model.

6.1.4 High resolution metho d

For the three arrays A, B, and C, the dispersioncurveshave beencalculatedby searching the

maximum of the high-resolutionfrequencywavenumber estimator de�ned by Capon (1969)and

Ohrnbergeret al. (2004a). The estimator dependsupon the crossspectral matrix averagedover

the 6 minutesof available signals. The resultsare shown in �gures 6.12(a)to 6.12(c), for arrays

Array name kmin kmax f min f max

A 0.069 { 3.9 � 15.0

B 0.023 0.46 2.4 14.2

C 0.023 0.22 2.4 6.9

Table 6.3: For each array, the minimum and maxi-

mum wavenumbersdeducedfrom the comparisonof

the high resolution results to the theoretical disper-

sion curve (rad/m). Also are given the minimum

and maximum frequenciescorresponding to those

wavenumbers (Hz).

A, B, and C, respectively. The limits kmin and

kmax =2 validated for the f-k method are shown

in grey. Theoretically, the resolving power of

the high-resolutionmethod shouldbe better than

the f-k method, and estimates of velocity may

be reliable even outside those restrictive limits.

From the observation of the stabilit y of the high-

resolution results and the comparison with the

theoretical dispersion curve, we de�ne apparent

limits of the high-resolution valid for this partic-

ular case(table 6.3). This task is not possiblefor

a real experiment. From a careful examination of

�gures 6.9and 6.12,the high resolutionmethod providescorrect answersbelow kmin , extending

the frequencyrange by approximately 0.5 Hz. The poor resolution of array A between6 and
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9 Hz is not signi�cantly improved by the high resolution approach. At high frequency, array

B gives nearly perfect results up to its kmax , in contrast with array C which shows a lot of

instabilities above kmax =2. After selectingthe points between the validit y curves, an average

dispersioncurve is calculatedto feedthe inversionalgorithm.
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Figure 6.12: Results of the high resolution frequency-wavenumber method applied to arrays A (a), B (b)
and C (c). The grey exponential curves are the minimum and half maximum wavenumber limits deduced
from theoretical array response. The black lines with dots obtained from computations are compared to the
theoretical dispersion curves(thin plain lines).

Misfit value
0.040 0.045 0.050 0.055

0 1000 2000 3000 4000
Vp (m/s)

0

10

20

30

40

D
ep

th
(m

)

0 1000 2000
Vs (m/s)

0

10

20

30

40

D
ep

th
(m

)

4 6 8 10
Frequency (Hz)

200

400

600

800

V
el

oc
ity

(m
/s

)

Figure 6.13: Results from inversion of the dispersion curve obtained with the high-resolution frequency
wavenumber method. (a) Vp, (b) Vs of generatedmodels and (c) corresponding dispersion curves. The dots
represent the experimental dispersioncurvesto which the calculated dispersioncurvesare compared. The black
lines of �gures (a) and (b) are the velocity pro�les of the true model.

We performedexactly the sameinversionprocessesasfor the f-k results (�gure 6.13. As we

do not have error estimation on the dispersioncurve, the model selectionis basedon the mis�t

threshold (0.075) for which the dispersion curve uncertainty includes the data scattering. As

for f-k method, the Vs pro�le up to the major impedancecontrast can be determined. Vp over

the whole column and Vs below 25 m are not de�ned by analysing the vertical component of
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the ambient vibrations. The slightly extendedfrequencyrange comparedto f-k method does

not induce a signi�cant di�erence in the inverted Vs pro�les.

6.1.5 Spatial auto-correlation metho d

The signals simulated for the three arrays A, B and C are analysedusing the spatial auto-

correlation method described in section5.2. The azimuths and the distancesbetweenall couples

of stationsareshown in �gure 6.15. The pairs of greycirclesarethe selectedrings for the spatial

auto-correlation computation. Distancesare summarizedin table 6.4.

Array name Min. radius Max. radius Number of pairs
A 7.8 9.4 9
A 12.1 13.2 9
A 15.3 17.0 9
A 21.2 22.5 9
A 24.4 25.3 9
B 12.5 18.0 6
B 22.0 26.3 9
B 34.7 43.3 12
B 49.1 63.8 12
B 73.8 87.3 6
C 33.5 35.0 9
C 48.4 54 9
C 63.9 65.1 9
C 85.6 87.3 9
C 97.5 99.4 9

Table 6.4: Distance limits for the selectedrings for arrays A, B and C. The last column is the number of
station couplesincluded in each ring. Distancesare expressedin metres.

As in the f-k method (section 6.1.3), the choice of the window length for calculating the

auto-correlations is crucial. An exampleof its in
uence is presented hereafter. The average

auto-correlation ratios are calculated with equation 1.11 for pairs of stations separatedby

distancesbetween 30 and 40 m. In �gure 6.14, the auto-correlation curves are plotted for

various window lengths, counted in number of cyclesof the central consideredfrequency(! 0):

10, 25 and 50 (from light to dark grey, respectively). For the three curves, the averagevalues

are closeto the true auto-correlation curve (black thick line) in the range3.5 to 5.5 Hz. Below

3.5 Hz, the 10 cycle auto-correlation curve deviates from the correct function, while the two

other curves(25 and 50 cycles)are closeto it for frequencyas low as2.5 Hz. This discrepancy

for short windows is probably due to a lack of sourceazimuth coverage(Asten et al. 2004),

as the number of acting random sourcesis inversely proportional to the consideredduration.

Another explanation might be that the spectral estimatesare more in
uenced by unavoidable

sidee�ects generatedby cutting signalsinto time windows. Also, long time window curvesare

smoother than short onesand exhibit smaller standard deviations (�gure 6.14). During this

thesis, the 25 cycle time windows are kept for the computation of auto-correlation curves.
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Figure 6.14: In
uence of time window lengths on
auto-correlation curves (averageand standard devi-
ations): 10 cycles (light grey), 25 cycles (medium
grey) and 50 cycles(dark grey). The thick black line
represent the theoretical auto-correlation curve.

Array name kmin kmax f min f max

A 0.015 { 1.9 � 15.0
B 0.012 0.4 1.7 13.4
C 0.011 { 1.5 � 15.0

Table 6.5: For each array the minimum and max-
imum wavenumbers deducedfrom the solution den-
sity grid (�gure 6.17). Also the minimum and maxi-
mum frequenciescorresponding to the selectedsam-
ples (Hz).

A total of 15 auto-correlation ratio curves (�v e by array) are calculated for time windows

of 25 cycles. Only one curve per array is shown in �gure 6.16 with grey dots and grey errors

bars. The consistencyof all 15 auto-correlation curvesis checked on dispersioncurvesin �gure

6.17(a) to 6.17(c), for arrays A to C, respectively.

The �fteen auto-correlationcurveswith the selectedsamplesare inverted with �v e indepen-

dent runs keepingthe sameparameterization as for the two precedingmethods. The results

are shown in �gure 6.18. Only three auto-correlation curves among the �fteen are shown in

�gure 6.18(d) to 6.18(f). A good agreement is found between the calculated curves and the

observed auto-correlations (black dots and their error bars) even below 2 Hz. The theoreti-

cal dispersion curve is drawn for comparisonin �gure 6.18(c). The auto-correlation method

correctly retrieves the dispersion curve for all frequenciesabove 2.5 Hz. For lower frequency,

a systematic bias is observed in �gure 6.18(c). Comparing �gures 6.11(b) and 6.13(b), the

inversion of auto-correlation o�ers a little more constraint on Vs at the baseof the sediment

layer. Vp over the whole column and Vs below the major impedancecontrast is not resolved as

for the other methods.

6.1.6 Discussion and Conclusions

Three processingmethods have been tested to retrieve the dispersion properties (dispersion

curves or auto-correlation curves) on a two-layer model from simulated noisearray measure-

ments: the f-k method, the high-resolution f-k method and the spectral auto-correlation tech-

nique. Only the vertical components are processedand the dispersion (or auto-correlation)

curvesare inverted to obtain the Vs pro�le. The �rst conclusionis that several array apertures

have to be used to construct the dispersion (auto-correlation) curves in the appropriate fre-

quencyrange. From the inverted velocity pro�le point of view, all three methods have almost

the samee�ciency for this synthetic case.The Vs pro�le is correctly retrieved down to about
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Figure 6.15: Azimuth-in ter-distance plot: each dot
represent one couple of stations. The pairs of grey
circles show the limits of the chosenrings. (a) Array
A, (b) array B, and (c) array C.
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Figure 6.16: Examples of auto-correlation curves
obtained for (a) array A, (b) array B, and (c) array
C. The black dots and error bars are the samples
selectedaccording to criteria of �gure 6.17.
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Figure 6.17: (a) to (c) grids in frequency-slownessdomain representing the density of dispersioncurvesolutions
for arrays A to C, respectively. The plain and the dotted lines are the wavenumber limits deducedfrom the
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Figure 6.18: Inversion of the selected15 auto-correlation curves. Only three of them are presented here. (a)
Vp, (b) Vs pro�les of generatedmodels. The black lines of �gures are the velocity pro�les of the true model. (c)
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25 m which is the depth of the interface.

A special attention is paid to the limited reliabilit y speci�c to each array. Basedon the

knowledgeof the true dispersioncurve, we concludethat the wave number limits deducedfrom

the theoretical array responseare consistent with the capabilities of the f-k method. Outside

those limits, the calculated curves may exhibit strong bias. The high-resolution f-k method

is sometimesmore e�cien t than the f-k approach in de�ning the dispersion curve but no

de�nitiv e and systematic improvement may be found. Like the auto-correlation method, the

high-resolution method can be seenas complementary technique con�rming the results of the

f-k method.

No method is able to retrieve the velocity below the interface at 25 m. This limited pene-

tration depth is a direct consequenceof the high-pass�ltering e�ect of the ground structure on

the vertical component. This characteristic is a strong limitation of the method for assessing

the local ampli�cation factor in earthquake engineering,which dependsupon the value of the

velocity contrast.
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Figure 6.19: Inversion of Love and Rayleigh fundamental modesfor perfect dispersion curves. (a) Vs models.
(b) Calculated Love dispersioncurves. (c) Calculated Rayleigh dispersion curves. The black dots are the target
Rayleigh dispersion curves. The grey dots are the target Love dispersion curve.

Further improvement of the technique should consider horizontal components which are

richer in low frequencywaves than the vertical ones(�gure 6.2). This alternative is tested in

section 5.1.2 where the Love dispersion curve measuredat low frequencycombined with the

Rayleigh dispersioncurve allows an extention of the reliabilit y of the inversiontowards deeper

layers. We compute the theoretical Love and Rayleigh dispersioncurvesfor the ground model

usedin simulations. The Rayleigh dispersioncurve is cut between2.5 and 8.5 Hz as observed

in �gure 6.2 while the Love dispersion curve is supposedto be known only between 1.5 and

2.5 Hz, in the vicinit y of the fundamental resonancefrequency. The theoretical Love samples

used for the inversion are represented with grey dots, and the Rayleigh sampleswith black

dots in �gures 6.19(b) and 6.19(c). Thesetwo curvesare jointly inverted with �v e independent
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runs and the results are shown in �gure 6.19. Only the Vs pro�les of the generatedmodelsare

shown in �gure 6.19(a). The corresponding calculateddispersioncurve for Love and Rayleigh

areshown in �gure 6.19(b)and6.19(c),respectively. Comparedto the Rayleigh wave inversions,

the combined Love and Rayleigh wave inversioncorrectly retrievesthe Vs valuebelow the main

velocity contrast at 25 m. This result stressesout the interest of developing techniquesof Love

wave extraction from noisearray measurements.

6.2 Li �ege site

For a simulated wave�eld, the theoretical model is perfectly known and the inversionreliabilit y

is easily checked by comparing the results to the known velocity structure. On real sites, the

results have to be validated by external geologicalor geotechnical information like existing

borehole descriptions, cone penetration test (CPT) or conventional geophysical prospecting

data. Actually, those data are also a�ected by uncertainties which must be consideredin the

validation process.This sectioncomparesthe resultsof the three processingtechniquesapplied

to array vibration measurements in the city of Li�ege,Belgium. The reliabilit y of the techniques

is evaluated using newly acquired seismicrefraction data and existing boreholedata. Signals

generatedby hammer shots were recordedon vertical sensorsfor measuringthe �rst P-wave

arrivals and the apparent velocity of the triggered surfacewaves. A special care is paid to the

uncertainties of the interpretation of usual refraction data. Within an urban context, the signal

to noiseratio is relatively low, and the picking of the P-wave �rst arrivals can be ambiguous.

For each picked time, an error value is estimated. The traveltime-distancecurves are then

inverted using the neighbourhood algorithm (Sambridge 1999a)to obtain one-dimensionalVp

pro�les. This method o�ers the advantage over other commonapproachesto take into account

the picking uncertainties. The arti�cially triggered surfacewaves were processedto give the

high frequencypart of the dispersioncurve (Stokoe et al. 1989,Malagnini et al. 1995),which

might be uncertainly deducedfrom the processingof microtremor arrays (seebelow). The

overlapping frequencyrangesof ambient vibrations and triggered waveso�er the opportunit y

to validate the array results. Though only the vertical components of the sensorsare usedfor

the array processing,we measuredthe three components of the particle motion. The horizontal

to vertical spectral ratios (H/V method, Bard 1998) were computed for all the sensors.The

frequencyof the peak of the H/V curve is known to be closeto the resonancefrequencyof the

site (Bonnefoy 2004),giving an additional constraint to the Vs pro�le.

6.2.1 The test site

The experimental site is situated in the alluvial plain of Meuseriver, near the centre of Li�ege

city, Belgium (�gure 6.20). At this location, the valley is about one kilometre wide and the

river divides into two branches (the main stream and its derivation), delineating a lenticular

island of 1.5 km long and 500 m large. The test site, which is a 
at and unbuilt zonewith

a triangular shape of 200 m side, is located at the North-East end of the island (�gure 6.20).
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It is surroundedby several streetsand one main road on its South-East side along the Meuse

derivation (�gure 6.20).

The geologystructure below the city centre is made of alluvial layers overlying a shaly

Paleozoicbasement. The layer geometry and properties are well documented on geotechnical

maps (Fagnoul 1975) gathering the existing information (mainly Cone Penetration Testsand
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Figure 6.20: Local map of the test site. Th grey

squares represent the locations of boreholes. The

Cone Penetration Test is marked by a black cross

inside a grey square. The North-South and East-

West P � SV pro�les are shown with thin black lines.

borehole data). Twelve boreholeswere drilled

to the bedrock in the neighbourhood of the test

site. They are reported in �gure 6.20 and their

logs are summarizedin table 6.6. Three types

of soft sediments are encountered from top to

bottom: back�lls of varying thickness(from 2 to

8 m), 
uvial silts or clays of irregular distribu-

tion (down to 6 m depth, sometimescompletely

replacedby back�lls), and �nally a fewmetresof

sand and/or gravel overlying the bedrock. The

top of the bedrock was found at a depth rang-

ing from 10.5to 13 m. It is madeof Wesphalian

shalesand sandstoneswith numerouscoalveins,

intensively exploited during the XX th century.

The bedrock depth reported by the borehole

descriptionsmay not correspond to a sharp in-

creaseof the seismicvelocity, due to the pres-

enceof a few metre thick weatheredrock layer

Jongmansand Campillo (1990). In the absence

of speci�c information about the seismicproper-

ties at the test site, we conductedactive seismic

prospecting along two pro�les oriented North-South and East-West (see�gure 6.27 for loca-

tion). Along each line weredeployed twenty-four 4.5Hz vertical sensorswith a spacingof 2.5m

and the waveswere generatedwith a hammer and an explosive source.An exampleof signals

generatedby an explosive sourceis given in �gure 6.21. P-wave arrival times and Rayleigh

wavesare clearly visible and were inverted to obtain Vp and Vs pro�les, respectively.

Refraction

A method basedon the neighbourhood algorithm described in section 1.2.1 is used to invert

real data. For our particular real case,the geologicalstructure evincedfrom the boreholesis

roughly one-dimensionaland the data uncertainties are relatively high due to the bad signal to

noiseratio. Thus, we limit our inversion to velocity structures without dipping interfaces.

The two refraction linesareanalysedseparatelyusingthe method described in section1.2.1.

The time-distancecurvesare shown in �gures 6.22 and 6.23 (plots labelled (e) to (h)). From

their shapes, it is obvious that a model with at least three layers has to be used for the
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Borehole Back�lls Silts or Clay Sandand gravel Bed-rock Water level
B248 0.0 to 2.7 2.7 to 6.0 6.0 to 10.0 - -
B251 - 0.0 to 3.0 3.0 to 12.0 12.0 -
B252 - 0.0 to 2.5 2.5 to 10.6 10.6 -
B253 0.0 to 7.5 - 7.5 to 11.3 11.3 -
B254 0.0 to 5.5 - 5.5 to 10.3 10.3 -
B255 0.0 to 4.5 - 4.5 to 10.3 11.3 -
B294 0.0 to 3.6 3.6 to 6.2 6.2 to 13.0 13.0 -
B295 0.0 to 3.9 3.9 to 4.6 4.6 to 12.6 12.6 3.9
B296 0.0 to 2.0 2.0 to 4.4 4.6 to 12.7 12.7 3.5
B297 - 0.0 to 2.8 2.8 to 11.0 11.0 2.8
B298 0.0 to 2.7 2.7 to 4.9 4.9 to 11.3 11.3 -
B299 0.0 to 8.5 - 8.5 to 13.0 13.0 -

Table 6.6: Borehole descriptions around the site (from geotechnical database). From B294 to B297, the silty
layer is replaced by soft blue clays. Only B248 is included in the area investigated by arrays and geophysical
experiments. Depths measuredfrom surfaceare in metres.
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Figure 6.21: Recorded signals for East-West P � SV refraction line, West source. First P-wave are visible
on the left with small amplitudes. Surfacewavesdevelop between0.1 and 0.4 secondsand constitute the most
energeticpart of the signal.
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Figure 6.22: Refraction results obtained with travel time NA inversion for pro�le East-West. (a) to (d)
Vp pro�les obtained by inversion for South, Central towards South, Central towards North, and North shots,
respectively. (e) and (h) corresponding calculated traveltime-distance curves (in the sameorder). The black
dots and the error bars are the experimental times picked on recordedsignals.
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Figure 6.23: Refraction results obtained with travel time NA inversion for pro�le North-South. (a) to (d) Vp

pro�les obtained by inversionfor West, Central towardsWest, Central towardsEast, and East shots,respectively.
(e) and (h) corresponding calculated traveltime-distance curves (in the sameorder). The black dots and the
error bars are the experimental times picked on recordedsignals.
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data inversion. The water table is a few metre deep(between2.5 and 3.9 m from the closest

boreholes) in the alluvial layers and the velocity in the intermediate layer was constrained

between1400and 1600 m/s. Five parameters(three Vp and two thicknessvalues)are inverted.

The resultsareshown in �gures 6.22and 6.23for linesEast-Westand North-South, respectively.

The generatedground models are presented in �gures (a) to (d) and the comparisonof the

calculated traveltimes with the experimental curves is shown in �gures (e) to (h). The lowest

mis�t found is around 0.2 and a commongrey scalefor the mis�t is adjusted to all cases.A

threshold of one is chosenfor the mis�t to select all models with traveltime-distance curve

inside the experimental uncertainties.

The feature common to all pro�les is the Vp increaseto around 1500 m/s at about four

metresdeep. It is consistent with the observed level of the river around the site (bank walls)

and with the water table in the holes. Someslight variations may be observed between the

di�erent shots for the super�cial layer velocity: for the best model of each shot, Vp ranges

from 275 to 350 m/s, and from 200 to 430 m/s consideringthe completeuncertainty interval.

The velocity in the basement is poorly constrained,with a rangebetween2000and 4000m/s.

However, from the extremity shots (�gures 6.22(d), 6.23(a) and 6.23(d)), the velocity below

15 m is probably around 3000 m/s. There is no evidenceof a well de�ned contrast for the

basement, but a transition zone located between 7 and 15 m is observed for all shots. This

intermediatezonecorrespondsto the bottom of the alluvial deposits and to the weatheredrock

layer which can reach a thicknessof �v e metres(Jongmansand Campillo 1990).

Rayleigh wave pro cessing

4 6 8 10 20 40 60 80
Frequency (Hz)

0.5
1

5
10

50
100

A
m

pl
itu

de

Figure 6.24: Triggered surfacewavesalong P � SV

pro�les North-South and East-West. Averagespectra

(plain lines) and standard deviations (dashed lines)

for 24receiversrecordinga black powder shot situated

at 20 m from the �rst sensor(thick black lines) and a

hammer shot (grey lines) and the ambient vibrations

recordedwith the samesensors(thin black lines).

During the samecampaign, the geophonelay-

out was used to record arti�cially generated

Rayleigh waves. Sourceswere placed with an

o�set of 20 m in order to avoid near-�eld e�ects

on the closestreceivers. Two kinds of sources

were used: hammer shots like in the preceding

sectionand explosive loads(100gr of black pow-

der) buried at about 0.8 m deep. Eight shots

wererecorded,correspondingto the two pro�les,

the two sourcetypes,and the two extremities of

pro�les. The averagesand the standard devia-

tions of the frequencyspectra observed for the

two sourcesare comparedto the ambient noise

level in �gure 6.24. The amplitude for the ex-

plosive shotsis about 25 times greater than the

amplitude for the hammer shots. The energy

level of the ambient vibrations is so high that

the results from hammer shots might be valid
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Figure 6.25: Triggeredsurfacewavesalong P � SV pro�les North-South and East-West. (a) to (d) Frequency-
wavenumber semblance maps for the di�eren t shots: (a) East explosive shot and (b) East hammer shot on EW
pro�le, (c) South explosiveshot and (d) South hammershot on NS pro�le. (e) Picking of the maximum apparent
velocity for all sourcelocations and types(8 curves,thin lines for hammersand thick lines for explosives).

only insidea narrow frequencyband between15 and 25 Hz. On the other hand, explosive shots

are far above the ambient noisefor all frequenciesbetween6 and 50 Hz.

For each shot and for all frequencybands,a frequency-wavenumber semblanceis calculated

for the linear arrays of sensors. The technique is exactly the sameas for the processingof

microtremor arrays (section 1.2.3), except that only one time window is processed.The ap-

parent velocity is deducedfor each frequencyband. The calculatedsemblanceplots are shown

for two shot positions in �gures 6.25(a) to 6.25(d). Figures (a) and (c) are for explosive shots

and �gures (b) and (d) for hammer shots. The consistencyof the measureddispersion curve

(maximum of semblance) checked for all eight sourcesin �gure 6.25(e)is remarkable. All plots

are cut between8 and 40 Hz which is inside the valid interval for explosive shots but, amaz-

ingly, outside the hammer shot validit y range. One reasoncould be that the ambient noiseis

predominantly madeof surfacewaves,leadingto a global coherencyof the semblancefunction.

Below 10Hz, for both explosive and hammershots,the uncertainties over the velocity estimates

drastically increase(�gures 6.25(a) to 6.25(d)).

The Rayleigh dispersioncurve is not directly inverted hereto obtain the Vs or Vp pro�le. It

is usedin the next sections,comparingto array results.

SH refraction

One SH refraction pro�le has beenachieved in the centre of the site with two shot points at

each extremity. The S-wave arrivals are picked with an estimation of the error, consideringall

directions for each shot. The observed traveltime-distancecurve are shown in �gures 6.26(c)
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and 6.26(d) by black dots and their associated error bars. From their shapes, it is obvious
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Figure 6.26: Refraction results obtained with travel time NA inversion for SH pro�le. (a) and (b) Vs pro�les
obtained by inversionfor the West and East shots, respectively. (c) and (d) corresponding calculated traveltime-
distance curves (in the sameorder). The black dots and the error bars are the experimental times picked on
recordedsignals.

that a two-layer model is su�cien t. The neighbourhood algorithm is then launched with three

parameters(Vs of each layer and thicknessof �rst layer). The results are shown in �gures

6.26(a) to 6.26(d). The generatedground models are presented in �gures (a) and (b) and the

comparisonof the calculatedtraveltime-distancecurveswith the experimental curvesis shown

in �gures (c) to (d). The lowest mis�t found is around 0.2, similar for both shots. Vs at the

surfaceis between100 and 400 m/s consideringall models. For the best models, the velocity

is between260and 290m/s. Between0 and 10 m, Vs increasesup to 500m/s. The maximum

possiblevelocity at 10 m is around 1000m/s.

6.2.2 Am bien t vibrations recording

Ambient vibrations were measuredwith two sets of sensors: 10 three-component Lennartz

sensors(resonancefrequencyof 0.2 Hz) and 22 vertical 4.5 Hz geophonesusedfor the P � SV

experiments. For the �rst array (A), 22 4.5 Hz vertical sensorswere set up 5 m apart on a

17.5 m radius circle (�gure 6.27(a)). The hole in the circle of �gure 6.27(a) comesfrom a

defective receiver, resulting in 21 available signals. The ten Lennartz sensorswere set up with

three distinct geometries(Arrays B to D, shown on �gures 6.27(b) to 6.27(d), respectively).

The geometry of arrays B and D was made of one central sensorand three triangles rotated

by 40� , with maximum apertures of 40 and 50 m, respectively. Array C has a central sensor

and nine sensorsdistributed on a circle with a radius of 40 m. All the sensorpositions were

measuredwith a theodolite, expecting a centimetric accuracy.

The horizontal to vertical spectra are calculatedfor all individual three-component signals.

Typical spectra are shown for the central station in �gures 6.28(a) to 6.28(c). The plain line

is the averageof all time windows while the dashedlines are drawn at onestandard deviation

(geometrical average). The total recording length is 6 hours. Statistics are calculated over
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Figure 6.27: Local mapsshowing the array geome-
tries (black dots), the refraction lines (shots with
grey stars and receivers with grey circles), borehole
and conepenetration test locations (grey squareand
grey squareswith cross,respectively). Y axis is ori-
ented towards the magnetic North (site of the old
Bavi�ere Hospital, Li �ege, Belgium, 50.64� N, 5.57� E,
19th March 2002). Each ambient noisearray geom-
etry is represented on a separateplot: (a) Array A,
(b) Array B, (c) Array C and (d) Array D.
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Figure 6.28: Spectral curvesof the central station
of array A, B and C. The plain line is the averageand
the dashedlines are located at one standard devia-
tion. (a) Amplitude spectrum of the vertical com-
ponent. (b) Amplitude spectrum of one horizontal
component. (c) Spectral ratio Horizontal to Vertical
(H/V). Grey bands indicate the average and stan-
dard deviation of the frequencypeakvaluesobserved
for each individual time window.

3690time windows of �v e secondseach. The vertical and an horizontal component spectra are

presented in �gures 6.28(a) and 6.28(b), respectively. A clear high pass�lter e�ect is observed

for the vertical component as demonstratedby Scherbaum et al. (2003) for a synthetic case.

The ratio of the vertical to the horizontal averagecomponent is shown in �gure 6.28(c) and it

exhibits a well developed peak at 5.3 Hz. The results are quite similar for the other stations,

with a meanfrequencyvarying from 4.8 to 5.3 Hz with a standard deviation of about 0.5 Hz.

The averagevalue of the peak frequencyis 5.17� 0.57Hz (29015time windows of �v e seconds)

over the whole area. The small spatial variation of the resonancefrequencyis supporting the

assumptionof a one-dimensionalstructure.

6.2.3 Frequency-w avenum ber metho d

As shown in section 6.1, the computation of the theoretical frequency-wavenumber array re-

sponse is a mandatory tool for assessingthe reliable range of the dispersion curve. These
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theoretical responsesare calculatedfor arrays A to D in �gures 6.29(a) to 6.29(d). The resolu-

tion and aliasing limits (section 1.1.1) de�ned from plots (a) to (d) are reported in table 6.7.
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Figure 6.29: Theoretical frequency-wavenumber
response calculated for Arrays A to D (�gures (a)
to (d), respectively.

Theoretical FK response
0.2 0.4 0.6 0.8

Array Resolution limit Aliasing limit
A 0.056 1.33
B 0.045 0.28
C 0.030 0.18
D 0.024 0.11

Table 6.7: Wavenumber limits (rad/m) deduced
from theoretical array responses(�gure 6.29).

For array A, the signalswere recordedwith 16 short windows of four minutes. For arrays

B to D, continuous signalsare available during 1 hour, 46 minutes, and 1 hour 20 minutes,

respectively. For each array, vertical components are processedfrom 2 to 20 Hz using the

method described in section6.1. The apparent velocity is estimated from time windows with

a length of 50 cycles,with an overlap of 50% with their neighbours. The statistical results

(velocities of the semblance peaks) in the velocity-frequency plane are presented with one

histogram per frequency band in �gures 6.30(a) to 6.30(d) for arrays A to D, respectively.

The three curves indicate the wavenumber limits (k equal to a constant) deducedfrom the

theoretical array response: resolution (plain lines), half of the aliasing (dotted lines), and

aliasing wavenumber (dashedlines). For arrays A and B, the velocity estimate is remarkably

stable against time within the wavenumber limits. According to the resolution criterion (table

6.7) the velocity valuesmay be biasedbelow 6 Hz for those two arrays. Indeed, the average

velocity valuesobserved at 5 Hz for arrays B and A (& 1600m/s) are higher than the velocity

measuredby array C (� 1200m/s) which has a correct responseat this frequency. Moreover,

the uncertainties below 6 Hz increasefor all arrays, even within the valid wavenumber rangeof

array C. This is probably due to the energydrop on the vertical component at the vicinit y of

and below the resonancefrequency(around 5.2 Hz from H/V results).

Figure 6.31 shows the average dispersion curve (black curve and error bars) calculated

from arrays A to D, keepingthe data betweenthe resolution and half the aliasing limits. On

the samegraph is plotted in grey the averagedispersion curve calculated from the triggered

surface waves. An indisputable agreement is found between 12 and 20 Hz. In this range,

the curve di�erences all fall inside the respective standard deviations. Between8 and 12 Hz,
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Figure 6.30: Results of the frequency-wavenumber method applied to arrays A to D ((a) to (d), respectively).
The three exponential curvesrepresent constant wavenumber curvesvaluesof which are deducedfrom theoret-
ical frequency-wavenumber response(�gures 6.29): minimum (continuous line), half the maximum (dots) and
maximum wavenumber (dashed).
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Figure 6.31: Averageand standard deviations (vertical bars) of apparent dispersion curve from arrays A to D
(black dots). The grey dots represent the averagedispersion curve calculated from �gure 6.25(e) for triggered
surfacewaves.
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the array velocity is slightly higher than the active experiment results which are a�ected by a

relatively high uncertainty (�gure 6.25). The array dispersion curve is then consideredin the

low frequencyrangeand extendedfrom 20 to 40 Hz using the active experiment results. The

global dispersioncurve is shown with black dots in �gure 6.32(c).

Beforeinversion, the rangesof the seven parameters(Vp and Vs in the three layers and the

thicknessesof the two uppermost layers) are de�ned in table 6.8 according to the geometry

and characteristicsdiscussedin section6.2.1 on page125. This parameterisationwas usedto

generate50,000modelsby �v e independent runs with the neighbourhood algorithm. Of these,

the 17,500models found with a mis�t lessthan 1 are plotted in �gures 6.32(a) and (b) with a

mis�t grey scale. The lowest mis�t obtained is 0.44. The corresponding dispersioncurvesare

shown in �gure 6.32(c) with the samegrey scale.

Layer Bottom depth Vp Vs/ Vp Density Vp variation
Sediments 2 to 7 m 200to 430 0.01to 0.707 2 t/m3 {
Sediments 7 to 15 m 1400to 1600 0.01to 0.707 2 t/m3 {
Half-space { 2000to 5000m/s 0.01to 0.707 2 t/m3 {

Table 6.8: Parameters and their prior interval for spectral curve inversions (dispersion curves and auto-
correlation curves).
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Figure 6.32: Inversion of the averagedispersion curve of �gure 6.31. (a) Vp pro�les and (b) Vs pro�les of the
generatedmodels. (c) The corresponding dispersion curves (grey scale). The observed curve of �gure 6.31 is
shown by black dots and error bars.

From �gure 6.32(b), the Vs pro�le is well constrainedand almost constant on the �rst six

metres,with a slight increasefrom 220m/s at the surfaceto 250m/s at 6 m. Below this depth,

the uncertainties increasedramatically. The depth of the major velocity contrast is between

10 and 15 m with a basalshearwave velocity between1000and 3000m/s. The relatively high

frequencycontent of the Rayleigh waves and the uncertainty on the dispersion curve do not

allow a more precisede�nition of the depth and of the shearwave velocity below 8 m. The
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Vp pro�le is little constrainedby the dispersion curve inversion (�gure 6.32(a)) and doesnot

provide additional information above8 m, whencomparingto the refraction results(�gures 6.22

and 6.23).

The ellipticit y and the SH transfer function have beencalculatedfor the best model. They

exhibit a single peak around 5.2 Hz which corresponds to the H/V measurements. However,

for the ensemble of modelsshown in �gure 6.32,the peakof the theoretical ellipticit y is widely

distributed. Consequently, accordingto the H/V criterion, somemodelsmay be discarded. A

joined inversiondescribed in section5.3 is henceperformedwith the sameparameterizationas

in �gure 6.32 (table (6.8)). The weights for the dispersion curve and the ellipticit y frequency

are 0.5. The results are presented in �gure 6.33. The lowest mis�t obtained is 0.23 which is

approximately half of the mis�t in �gure 6.32,meaningthat the frequencyof the H/V peak is

nearly perfectly �t, becausethe minimum mis�t that canbeachieved with the parameterization

of table 6.8 is around 0.44.
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Figure 6.33: Inversion of the averagedispersion curve of �gure 6.31 and ellipticit y peak. (a) Vp pro�les and
(b) Vs pro�les of the generatedmodels. (c) The corresponding dispersion curves (grey scale). The observed
curve of �gure 6.31 is shown by black dots and error bars. (d) Calculated ellipticities (grey scale). The vertical
black lines delineate the target frequency of the peak (5.17 Hz� 0.57 Hz). The thin black curve is the average
H/V ratio observed for the central station (�gure 6.28(c)).

Comparing�gures 6.32(b)and6.33(b), the joined inversionwith the ellipticit y clearly results

in a better de�ned depth of the basement. It is impossibleto �nd a model that �ts the frequency
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of the H/V peakwith a depth above 9 m. The highest limit of the depth interval is alsoslightly

reduced,probably around 14 m.

6.2.4 High resolution metho d

The high resolution frequency-wavenumber method is used on the same signals as the f-k

method. The results are shown in �gures 6.34(a) to 6.34(d) for array A to D, respectively.

For array A, 16 signal windows were processedseparatelyproviding 16 velocity estimatesby

frequencyband (�gure 6.34(a))while only onevelocity estimateis available for arrays B and C.

For array D, two windows are available and two velocity estimatesare determinedby frequency

band (�gure 6.34(d)). The averagedispersioncurve obtained with the f-k method is plotted for

comparison,as well as the wavenumber limits deducedfrom the theoretical array responses.
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Figure 6.34: Results of the high resolution frequency-wavenumber method applied to arrays A to D (�gures
(a) to (d), respectively), represented with black dots. The dispersion curve observed for frequency-wavenumber
method is plotted for comparison in grey. Wavenumber limits deducedfor the f-k method are also shown with
the samelegendas in �gure 6.30.

For synthetic signals(section 6.1), the high resolution method results were consistent be-

tweeneach other and agreedwith the onesobtainedwith the f-k method and even gave a better

estimateof the true dispersioncurve for somefrequencies.For this real case,strong discrepan-

ciesare observed betweenthe di�erent curvesfor the high resolution method and betweenthe

two methods for somefrequencies,even in the theoretical validit y range. For instance,the ve-

locity valuemeasuredby array A at 6.5Hz (around 500m/s) with the high resolutionmethod is

lower than the onemeasuredwith the samemethod by the other arrays (about 700m/s). This

last value is consistent with the results of the f-k method. Also an abnormal jump on the high
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resolution curve is observed (�gure 6.34(d), array D) around 6 Hz, while the curve obtained

by f-k method exhibits a regular decreasewith frequency. The high resolution results for array

A at high frequencyseemto indicate the existenceof higher modes. The uncertainty on these

results is obviously too high to usethis information for inversionpurposes.As a conclusion,the

high resolution method appearsto be unable to obtain a reliable velocity estimate below 6 Hz

in this case.Over 6 Hz, a good agreement is reached betweenthe high resolution and the f-k

methods in the valid frequencyrangeof the arrays. The f-k method then appearsto be more

robust in the whole frequencyrange,with an increaseof the uncertainty in the low frequency

range.

6.2.5 Spatial auto-correlation metho d

This method is applied to the four arrays but only array A is shown here. Arrays B, C, and D

are not shown here becausethe obtained auto-correlation curvesare not consistent according

to the test described in section 5.2.3. The array geometriesare probably not well adapted

for the auto-correlation method. For non circular arrays, the spatial auto-correlation method

requires the de�nition of rings (Bettig et al. 2001) and the ten rings chosenfor array A are

shown in �gure 6.36. The auto-correlation curves are calculated using the method described

in section6.1. Three of the ten auto-correlation curvesare presented in �gure 6.35(black and

grey dots). The consistencyof all 10 auto-correlation curvesis checked in �gure 6.37with the

grid method described in section5.2.3. From 5 to 12Hz, all rings areconsistent with each other

and a commondispersion curve is delineatedby the dashedlines and the wavenumber limits

(plain and dotted lines). The data outsideof thoselimits are consideredas incoherent and are

discarded. They are marked with grey dots on the auto-correlation curvesof �gure 6.35. The

data selectedfrom the ten auto-correlationcurvesare inverted togetherwith the neighbourhood

algorithm as in section 6.1. Five runs are used with the sameparameterization as for the

frequencywavenumber method (table 6.8). The Vs pro�les are shown in �gure 6.38. The three

of the ten calculated auto-correlation curves are shown in �gures 6.38(d) to 6.38(f) with the

experimental black dots and the error bars shown in �gure 6.35. The minimum mis�t found

is 0.65. This relatively high value is due to the residual inconsistenciesbetweenthe ten auto-

correlation curves. Above 8 Hz, both frequencywavenumber and auto-correlationmethodsgive

the samedispersion curve. If we assumethat a mis�t of one is a good threshold to selectall

modelswithin the experimental uncertainties, this exampleshows that the �nal Vs uncertainty

rangefor all depth above8 m is larger for the auto-correlationmethod than for the wavenumber

method. For frequenciesbelow 8 Hz, a huge gap is observed between the two methods, with

much lower velocity estimates for the auto-correlation results. Moreover, the experimental

auto-correlation curves are not correctly �t below 6 Hz. In �gure 6.38(f), the experimental

points below 8 Hz are located on the left side of the calculated curves, which correspond to

an increaseof the velocity and to a better agreement with f-k methods. On the contrary, in

�gure 6.38(e), �tting the experimental points below 6 Hz would imply an even lower velocity.

The sametype of deviation is observed for the high resolution method (�gure 6.34(a)). This
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Figure 6.35: Examples of auto-correlation curves
obtained for array A. The black dots and error bars
are the samplesselectedaccording to criteria of �g-
ure 6.37.
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Figure 6.36: Azimuth-in ter-distance plot for array
A: each dot represent one couple of stations. The
pairs of grey circles show the limits of the chosen
rings.
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Figure 6.37: Grid in frequency-slownessdomain
representing the density of dispersioncurve solutions
for array A. The plain and the dotted lines are the
wavenumber limits deducedfrom the solution density
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wavenumber limits of the apparent dispersion curve.
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Figure 6.38: Inversion of the selectedsamplesof 10 auto-correlation curves for array A. Only three of them
are presented here. (a) Vp, (b) Vs of generatedmodels and (c) corresponding dispersion curves. The dispersion
curve observed for frequencywavenumber method is plotted for comparisonin grey. (d) to (e) Auto-correlation
curvesfor three rings with the observed ones(black dots and error bars).
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di�erence hasa strong in
uence over the inversionas shown by �gure 6.38(b).

6.2.6 Conclusions

A shallow sedimentary structure (10 to 15 m) of alluvial sediments over a shaly bedrock is

investigated with ambient vibration arrays to derive the shear-wave velocity pro�le. Four

arrays with distinct geometriesare deployed on the site. Three array processingmethods are

used to derive either the dispersion curve or the auto-correlation curves. These curves are

then inverted with the neighbourhood algorithm, which is well-suited to problemsa�ected by

strong non-uniqueness.Additionally , information from boreholes,classicalrefraction and active

surfacewave experiments are analysedto check the validit y of the array results.

Of the three processingtechniques,only the f-k method provided coherent dispersioncurves

for the three arrays and proved to be the more robust. The results provided by the high reso-

lution technique globally agreewith the �rst method but exhibit unexpected sharp variations

of the dispersion curve at somefrequencies.Finally, the auto-correlation technique was only

usablefor onearray and appearedto be very sensitive to uncorrelatednoise.

The refraction results provide a Vp pro�le with its uncertainties. For the inversion of am-

bient vibrations, Vp pro�les are uniformly chosenwithin this uncertainty interval. With only

the vertical component, a good de�nition of Vs down to 8 or 10 m is achieved. Below, the

experimental uncertainties are too great to obtain a correct estimation of the velocity. The in-

troduction of the H/V peak frequencyasa supplementary constraint improvesthe �nal results

by reducing the posterior uncertainty about the depth of the basement.

This exampleclearly demonstratesthat any singlemethod and any singlearray aperture is

not valid for a reliable determination of the Vs pro�le. On the contrary, we usedall available

methods to �nd out the robust featuresand to discard the contradictory results. The useof

the horizontal components would probably improve the determination of the deeper structure.



Conclusions

In the framework of array measurements of ambient vibrations, the objectiveof this thesiswasto

improvethe inversionof dispersioncurvesin order to retrievethe Vs pro�le of a groundstructure.

The uncertainties in the determination of the dispersion curve generally lead to a problem

highly a�ected by non-uniqueness.Direct search methods, like the neighbourhood algorithm

consideredin this work, o�er at leasttwo advantagesover classicallinearization approaches: the

whole parameterspaceis investigatedand prior information is easily introducedby restricting

the search to particular regionsof the parameterspace.However, thesemethods requirea great

number of forward computations. Moreover, the calculation of theoretical dispersioncurves is

donenumerically and classicalcodesneedto be tuned on a case-by-basebasisto give the right

answer. Consequently, we developed a new optimized and reliable algorithm to calculate the

theoretical dispersion curve of any one-dimensionalmodel, including fundamental and higher

modesof Rayleigh and Lovewaves. Wealsoextendedthe capabilitiesof the tool to the inversion

of the auto-correlation curves.

The Rayleigh dispersioncurvesobserved on the vertical components aregenerallynot avail-

ableat low frequencydueto the high-pass�lter e�ect of the groundstructure, which drastically

reducesthe penetration depth of the method. A variety of strategieswere tested to overcome

this limitation. The contribution of prior information about Vp, about the depth of the major

contrasts, and about the frequencyof the H/V peak were considered.No signi�cant improve-

ment was found with only one of these types of additional constraints, but their combined

e�ects always help in a better de�nition of the Vs pro�le.

Con�gurations with a greatnumber of layers,ten in our case,showedthat the non-uniqueness

of the problem dramatically increaseswhenlow velocity zonesareallowed in the ground model.

However, forbidding such model feature is not straightforward with the original neighbourhood

code. Several strategieswere developed which prove that this kind of prior information is of

prime importance. The lack of 
exibilit y with theseapproachesled us to revisethe neighbour-

hood algorithm itself. It was re-written in C++ with the possibility of �xing prior conditions

betweenparameters,like the one induced by Poisson'sratio or by the absenceof negative ve-

locity contrast. This alternative o�ers good perspectives, eventually for other purposes,but

intensive testing is still necessary.

The horizontal components are usually high-pass�ltered at a lower frequency than the

vertical ones. If the dispersion curve of Love waves can be estimated, the joint inversion of

high frequency Rayleigh and low frequency Love dispersion curves is a good alternative to

141
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investigate the deep part of the ground model. This is an interesting property that opens

perspectives towards a better prediction of the site ampli�cation from array measurements.

The observed dispersioncurvesmight follow the fundamental (usual assumption)or any of

the higher modes. If the harmonicbranchescanbecorrectly identi�ed, including all modesinto

the inversionslightly improvesthe �nal results. It also provides a good way of con�rming the

inversionresultsobtainedwith the fundamental mode. However, for our test case,the frequency

rangewherethe �rst higher mode is likely to be observed contains redundant information with

the fundamental mode. On the contrary, we show that a misidenti�cation of the observed

modesintroducesbias in the results. An experimental code is developed to search all possible

solutionsnot requiring a preliminary and subjective identi�cation of the modes. Assumingthe

number of potential modes, we show that only a few model classesreally �t the data curve.

Prior information are still necessaryto selectthe appropriate family of models.

We tested the inversion tool for non-perfect dispersioncurvesestimated from microtremor

recordings, either synthetic or real. Signal processingof array measurements includes the

frequency-wavenumber, the high resolution frequency-wavenumber, and the auto-correlation

methods. Thesemethods provide a reliable dispersioncurve over a limited wavenumber range

which mainly dependsupon the array geometry. Including biasedpart of the curves into the

inversionmight lead to incorrect results. Hence,strict rules for pre-processinginput curvesare

developed. We tested the relevanceof the limits deducedfrom the theoretical array response

which is entirely calculatedwith the array geometry. A good agreement is found betweenthem

and the rangeof the correct determination of the dispersioncurve.

Among the methods for processingthe raw recordings of ambient vibrations, the auto-

correlation method does not provide the dispersion curve in a direct way like the frequency-

wavenumber methods. Classicalapproaches involve two inversion processeswhich are known

to be highly non-linear. We developed a onestep inversionwith the neighbourhood algorithm.

Besidesthe simplicity, the advantage of this method is that the auto-correlation data uncer-

tainties are fully consideredduring the inversion. An original contribution of this work is also

the de�nition of a methodology for assessingthe valuable parts of the auto-correlation curves

to invert.

The alluvial plain of Meuseriver (Li �ege,Belgium) has beenchoosenfor the deployement

of the array method due to its one-dimensionalstructure (shallow alluvial deposits overlying a

shalybed-rock) anddueto the availablegeotechnical data. Information from boreholes,classical

refraction, active surfacewave experiments, and from the H/V peak frequencywere analysed

to check the validit y of the array results. Only the frequency-wavenumber method provided

consistent dispersion curves for all arrays and proved to be the most robust. The results of

the high resolution technique globally agreedwith the �rst method but exhibit unexpected

sharp variations of the dispersion curve at some frequencies. Finally, the auto-correlation

technique wasonly usablefor onearray. Theselast two methods appearedto be very sensitive

to uncorrelatednoise. A reliable Vs pro�le wasobtained down to 10 m. The depth of the main

velocity contrast is estimatedwith a relatively good precision(the depths found vary from 9 to
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14 m) but no information can be retrieved below. This reinforcesthe interest of investigating

the three-components techniquesto retrieve the Love dispersioncurve.

{ { {

During this thesis,wedevelopeda collectionof interpretation techniquesdevoted to ambient

vibration measurements. Prior information are necessaryto overcomethe non-uniquenessof

the dispersioncurve inversion. We provided the tool for integrating them in a rational way.

Several promising improvements have still to be studied and tested. The extraction of Love

dispersion curve from ambient vibrations is not as direct as the determination of Rayleigh

dispersioncurve from the vertical component. Signal processingmethods have to be tested on

synthetic and real experiments to assessthe real potentialities. The spatial auto-correlation

method applied on the three components of the recordingsalsoo�ers a solution to characterize

the relative portions of Love and Rayleigh wavesin microtremors,which is a necessarystep for

understandingthe noisewave�eld structure.

The conditional neighbourhood algorithm developed in this thesis takes into account the

physical conditions between parameters, which is necessaryto avoid the low velocity zones

during inversion. This work proved that this kind of prior information is of prime importance.

However, this code still needsintensive testing.

The useof a resamplingof the ensemble of models(Sambridge 1999b)may provide objective

statistics that are not possiblewith the current mis�t basedapproach.

The joint inversion with refraction measurements and a better recognition of the higher

modes by means of external information are also topics to study in order to improve the

velocity accuracy.

All the preceding discussionfocalized on one-dimensionalmodels. Extension to three-

dimensional casesmight be consideredin the future with the current development of �nite

di�erence codesto simulate the ambient vibrations. If the direct inversion is still not consid-

ered with thesecodes,currently available three-dimensionalsynthetic wave�elds will give the

opportunit y of a better understandingof the noiseproperties in such cases.
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App endix A

Sub-determinan ts of R(i )

The solution of the equation of motion for Rayleigh modes implies the computation of sub-

determinants of matrix R(z0) (section3.1.4,equation (3.34)). In this appendix, we present the

completeanalytical expressionsof theseterms. For doing so, we de�ne the following adimen-

sional real quantities:

hn = ĥn=k (A.1)

kn = k̂n=k (A.2)

SH = 0:51� e� 2dn ĥ n

hn

CH = 0:5(1+ e� 2dn ĥn )

)

if hn is real. (A.3)

SH = sin (� id n ĥn )
hn

CH = cos(� idn ĥn )

)

if hn is imaginary. (A.4)

SK = 0:51� e� 2dn k̂ n

kn

CK = 0:5(1+ e� 2dn k̂n )

)

if kn is real. (A.5)

SK = sin (� id n k̂n )
kn

CK = cos(� idn k̂n )

)

if kn is imaginary. (A.6)

wheredn = zn � zn� 1 is the thicknessof layer n.


 n = 2k2=(! =Vpn)2 (A.7)

a1 = 
 2
n � 2
 n + 1

a2 = h2
nk2

n

a3 = 
 2
n + a1 (A.8)

a4 = 1 � 
 n

a5 = 
 2
na2

expCorr = e� ĥn dn � k̂n dn (A.9)
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And we alsode�ne the following two dimensionalquantities:

c1 = � n ! 2=k

c2 = 1=c1 (A.10)

The sub-determinants of Gn are detailed herebelow (Gij kl = gn

�
�
�
�
�

i j

k l

�
�
�
�
�
, G is real, i before

G meansthat this component is imaginary) :

G1212 = a3CH CK � (a1 + a5)SH SK � (a3 � 1)expCorr

G1213 = c2(CH SK � h2
nSH CK )

iG1214 = ic2((a1 � 
 2
n )(expCorr � CH CK ) + (a4 � 
 na2)SH SK )

iG1223 = iG1414

G1224 = c2(k2
nCH SK � SH CK )

G1234 = c2
2(2CH CK + (1 + a2)SH SK )

G1312 = c1(
 2
nk2

nCH SK � a1SH CK )

G1313 = CH CK

iG1314 = i(a4SH CK + 
 nk2
nCH SK )

iG1323 = iG1314 (A.11)

G1324 = k2
nSH SK

G1334 = G1224

iG1412 = ic1((a1 � a4)(a4 � 
 n )(expCorr � CH CK ) + (a4a1 � 
 na5)SH SK )

iG1413 = i(
 nh2
nSH CH + a4CH SK )

G1414 = expCorr + G1423

G1423 = CH CK � G1212

iG1424 = iG1314

iG1434 = iG1214

iG2312 = iG1412

iG2313 = iG1413

G2314 = G1423

G2323 = G1414

iG2324 = iG1314

iG2334 = iG1214

G2412 = c1(a1CH SK � 
 2
nh2

nSH CK )

G2413 = h2
nSH SK

iG2414 = iG1314



147

iG2423 = iG1413

G2424 = G1313

G2434 = G1213

G3412 = c2
1(2
 2

na1CH CK + (a2
1 + 
 2

na5)SH SK )

G3413 = G2412

iG3414 = iG1412

iG3423 = iG1412

G3424 = G1312

G3434 = G1212

Tij kl = t �
n 1

�
�
�
�
�

i j

k l

�
�
�
�
�

and from equation (3.31), T1214 and T1223 are equal and imaginary. Using

equation (3.34) and de�nition of G (equations(A.11)), it follows:

R1212(zn� 1) = T1212G1212 + (T1213G1312 � 2T1214iG1412 + T1224G2412 � T1234G3412)=! 2 (A.12)

R1213(zn� 1) = ! 2T1212G1213 + T1213CH CK � 2T1214iG1413 � T1224G2413 + T1234G2412

R1214(zn� 1) = ! 2T1212iG1214 + T1213iG1314 + T1214(2G1423 + expCorr ) � T1224iG1413 + T1234iG1412

R1223(zn� 1) = ! 2T1212iG1214 + T1213iG1314 + T1214(2G1423 + expCorr ) � T1224iG1413 + T1234iG1412

R1224(zn� 1) = ! 2T1212G1224 + T1213G1324 � 2T1214iG1314 + T1224CH CK + T1234G1312

R1234(zn� 1) = � ! 2T1212G1234 + T1213G1224 � 2T1214iG1214 + T1224G1213 + T1234G1212
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App endix B

Generating increasing velocit y pro�les

As reported in section4.3.1, ensuringan increasingvelocity acrossa ground structure is nec-

essaryto retrieve information from the inversionof dispersioncurves. Methods of parameteri-

zations to achieve this requirement are proposedin this appendix. The parameterizationmay

introduce prior information into the inversion by preferring someclassesof models to others.

The best method is the one that provides an equal chance to all models to be generatedat

random.
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Figure B.1: Prior information carried by pa-

rameterization: LVZ (Vs pro�le). The black

lines are the minimum and maximum velocity

pro�les admissible.

The variousmethodsaretestedin termsof prior in-

formation brought by the parameterizationitself. For

doing so, 10000models are randomly generatedwith

each type of parameterization. At each depth, an his-

togram is constructed counting the number of occur-

rencesin each velocity class (100 classesfrom 0 to

the maximum velocity allowed by the parameteriza-

tion). All histograms are summarizedin a velocity-

depth plot with the number of occurrenceindicated by

grey scales.A �rst exampleis shown in �gure B.1 for

the Vs pro�le of the inversionof section4.3.1. The dis-

tribution at each depth is not perfectly uniform which

is prone to introduce someuncontrolled prior infor-

mation if Vs is not well constrainedby the dispersion

curve. On the contrary, for the same case, the Vp

pro�le has a perfect uniform distribution (not shown

here). This fact is unavoidable when making a vari-

able transformation to obtain the physical parameters

of the ground model (section 4.2).
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B.1 Selection metho d

Among the randommodelsgeneratedasin section4.3.1,the parameterizationalgorithm selects

only the one ful�lling the physical condition and having an increasingpro�le. With a great

number of layers, this method needsquite a lot of time as the probability of having no LVZ

is very small. Practically, it doesnot work. Like the parameterization in �gure B.1, the prior

information provided by the parameterization is optimum (uniform distribution).

B.2 Sorting metho d

A possibility to obtain an increasingvelocity pro�le would be to generateN random velocities

and to sort them. This method presents the major drawback that each random deviate is

not linked to the velocity at a particular depth. The parameter spacemay be very complex.

Moreover, there are little chancesto generatea model with a deepand sharp contrast, because

it requiresthat nearly all random valuesare small.

B.3 Velocit y-jump metho d
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Figure B.2: Prior information carried by

parameterization: velocity jump. The black

lines are the minimum and maximum velocity

pro�les admissible.

The velocity of the �rst layer is the �rst parameter.

The other parametersare the velocity jumps from one

layer to the next one. This is the basicapproach that

has been implemented when the number of layers is

small (section 4.2). The velocity for any layer i is

de�ned by V0 +
P i

j =1 dVj whereV0 is the random ve-

locity of the �rst layer and dVj the velocity jump at

each interface. V0 and dVj are random variableswith

a uniform distribution in the best case.Then Vi is the

sum of uniform random variablesand its distribution

tends to a Gaussiandistribution when the number of

layers increases(central limit theorem).

Figure B.2 shows the histograms for a parame-

terization where the velocity varies between 100 and

265 m/s (�
p

2
2 Vp0) at the surfaceand where all dVj

are randomly chosenbetween 0 and 400 m/s. This

kind of parameterizationmay be acceptablefor Vp be-

causethere are usually no special conditions on Vp

values. On the contrary, Vs values are linked to Vp

values(0 � � � 0:5) and this condition is impossibleto imposewith this method. As shown

by �gure B.2, this kind of parameterizationnaturally orientates the inversiontowards a regular

increaseof the velocity with depth.
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B.4 In terp olation metho d

In the precedingmethod, it is impossibleto allow strong velocity contrast (the maximum in the

exampleis 400 m/s) and to limit the maximum velocity (> 4000m/s in the example) of the

model. To improve the method, a minimum (Vmin ) and a maximum (Vmax ) velocity are �rst

de�ned. The velocity of any layer (Vi ) is de�ned as the �rst parameter (Vmin < Vi < Vmax ).

The velocities of the other layers are successively calculated to the top and to the bottom by
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Figure B.3: Prior information carried by parameterization: interpolation. The black lines are the minimum
and maximum velocity pro�les admissible. Starting layer is the (a) �rst one, (b) the 7t h, and (c) the last one.

Vi � 1 = Vmin + p(Vi � Vmin ) and Vi +1 = Vi + p(Vmax � Vi ), respectively (p is a random parameter

between0 and 1).

Figure B.3 shows the histogramsfor the several starting layers with Vmin = 200 m/s and

Vmax = 4000m/s. The starting layer hasa strong in
uence on the prior information provided by

the parameterization. To give all modelsan equalchanceof beinga solution, various inversions

with complementary starting layers must be run.

B.5 In terp olation metho d with random start

This method tries to improve the parameterspaceexploration by changingthe index of the �rst

layer. A random integer, between0 and n � 1 (if n is the number of layers), speci�es the index

of the starting calculation. The computation of the velocity pro�le is donein the sameway. A

new degreeof freedommust be addedand the parameterspacehasa more complexshape. In

the precedingmethod, there is a one-to-onerelationship betweenthe velocity pro�le and the set

of generatedrandom deviates. With this new parameter,onevelocity pro�le correspondsto an

in�nit y of possiblesetsof random deviates. In �gure B.4, this method clearly provides a more

uniform prior distribution than the precedingapproachesbut at the cost of a supplementary



152 APPENDIX B. GENERATING INCREASING VELOCITY PROFILES

parameter.

B.6 Bissection metho d
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Figure B.4: Prior information carried by pa-

rameterization: random interpolation. The

black lines are the minimum and maximum

velocity pro�les admissible.

Without adding a new parameter, the bissection

method may bring a better prior distribution than

the basicinterpolation method. The velocities are de-

�ned by a minimum value (�rst parameter, V). The

other parametersare between0 and 1. A total veloc-

it y variation is calculated from the secondparameter

p1, � V = p1 � (Vmax � V ). The velocity of the �rst layer

and last layer are set to V and V + � V, respectively.

The calculation of velocities starts from the layer at

the middle of the stack, Vi = V + pi � V . The stack

is then cut in two sub-stacks limited by velocities V,

Vi and Vi , V + � V . The calculation is the samein

each sub-stack until every layer has been a�ected a

velocity. The resulting prior distribution is shown in

�gure B.5. Comparing it with �gures B.2 and B.3, a

more uniform distribution is achieved without adding

a new parameter. Contrary to the precedingmethod,

each basicrandom parameter is directly linked to the

velocity at a �xed depth, which tends to simplify the

parameter space.Pro�les with a low velocity at depth are rarely generated. If the velocity of

the last and �rst layer are set to V, and V � � V, respectively, a symmetric imageis obtained.

B.7 Diagonal metho d

The spirit of this method is to give the samechanceto modelswith a regular velocity increase

and to models with sharp contrasts. The velocities are de�ned by a minimum value (�rst

parameter, V). The other parameters are between 0 and 1. A total velocity variation is

calculatedfrom the secondparameterp1, � V = p1 � (Vmax � V) whereVmax is the �xed maximum

velocity (4000m/s in this case).The third parameter is the intersectionof the pro�le with the

ascendingdiagonal of the rectanglede�ned by the V and V + � V of the top and the bottom

layer, respectively. 0 meansminimum velocity to be a�ected to the deepest layer. 1 means

maximum velocity to be a�ected to the highest layer. The already de�ned layer separatesthe

stack into two sub-stacks that can be processedin the sameway. The prior distribution for

this method is given in �gure B.6. The results are quite similar to the results of the preceding

method, exceptfor pro�les with low velocity at depth wherethis method appearsto be slightly

more e�cien t. A symmetric distribution can alsobe generatedby inverting the velocity of the
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Figure B.5: Prior information carried by param-
eterization: bissection. The black lines are the
minimum and maximum velocity pro�les admissi-
ble.
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Figure B.6: Prior information carried by param-
eterization: diagonal. The black lines are the min-
imum and maximum velocity pro�les admissible.

�rst and last layer like in the above method.

B.8 Including Poisson's ratio

None of the described methods o�ers a really uniform prior distribution like the one obtained

for the arbitrary pro�les (section 4.3.1and �gure B.1). And the physical limits, like the limits

on the Poisson'sratio, are not handled. However, with a �xed Vp pro�le (not random), it is

possibleto generatepseudoVs pro�les between0 and 1 m/s with oneof the available methods.

In a secondstep,Vs in each layer is scaledto [Vmin ; Vi;max ], the maximum valuesbeingcalculated

from the increasingand �xed Vp pro�le. The minimum value must be the samefor all layers to

avoid any LVZ whenscalingthe pseudopro�le. The e�ect of the scalingtransformation applied

to the diagonal method (section B.7) is shown in �gure B.7 for a �xed Vp pro�le equal to the

one of the theoretical model (�gure 4.1(a)). By comparisonthe scaling transformation is also

applied to the interpole method, starting from last layer (sectionB.4). If Vp is alsovariable, the

Vs prior density of probability is lessuniform than in �gure B.7. With the interpole method,

the maximum Vs pro�le represented by the black line hasalmost no chanceto be generatedby

the inversionalgorithm. The diagonalo�ers a more uniform prior distribution with an similar

probability for all model.

B.9 Conclusions

For the parameterizationdescribedin section4.2,the model canbeconstructedfrom the param-

eters in a direct way. For the methods proposedin this appendix, integrating the relationships
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Figure B.7: Prior information carried by param-
eterization: scaleddiagonal. The black lines are
the minimum and maximum velocity pro�les ad-
missible.

0 1000 2000 3000
Velocity (m/s)

0

40

80

120

160

200

D
ep

th
(m

)

Number of occurences/class
4 16 64 256 1024

Figure B.8: Prior information carried by param-
eterization: scaled interpole. The black lines are
the minimum and maximum velocity pro�les ad-
missible.

betweenlayers into a genericstructure would require the de�nition at the user level of blocks

and sub-blocks of layers where Vp and Vs are managedfor the whole block and not for each

particular layer. The description of such models would be less
exible than the basicdescrip-

tion layer by layer detailed in section4.2. The examplesof this sectionhave beencalculatedby

hard coding1 the layer structure for each case.No genericconstruction tool hasbeendeveloped

until now. Actually, the new conditional neighbourhood algorithm o�ers the possibility to set

whatever condition betweenany parametersin a very 
exible way. This why no special e�ort

hasbeenput on developing ready to usecodesfor the methods detailed in this section.

1parameter valuesexplicitly written in the code, compilation is necessaryto changeit
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