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Resume

Le bruit de fond sismiqueest une technique de plus en plus utilisee en genie parasismique
pour estimer le prol de vitesse des ondesde cisaillemen pour un site donne. Admettant
I'nypothese qu'elles sort majoritairement composeesd'ondes de surface, les vibrations am-
biantes enregisteespar un reseaude capteurspeuvert etre utiliseespour determiner la courbe
de dispersion. En gereral, celafournit une courbe sur une large gammede frequencest cela
comporte I'avantage de ne pas necessited’'usagede sourcearti cielle. A causede l'incertitude
sur lesdonneeset desnon-linearitesdu probleme,la solution de I'inversion descourbesde dis-
persionn'est pas unique. Les methodesde recherche directe commel'algorithme de voisinage
permettert l'investigation de tout I'espacedes parametres et l'introduction d'informations a
priori de maniererationnelle. Suite au nombre limit e de parametrespour l'inversiondesondes
de surface, elles constituert une alternative interessate aux methodes linearisees. Au cours
de cette these,des outils e caces bases sur l'algorithme de voisinagesort deweloppes pour
obtenir les pro Is uni-dimensionelde V; a partir d'enregistremeis avec dessourcesactivesou
passives. Commele nombre de modelesgeneres est habituellemert grand avec cesmethodes
stochastiques, une attention particuliere a ete attachee a I'optimisation et a la qualite de la
resolutiondu problemedirect.

Le code deweloppe a ete teste sur plusieurs modeles syrnthetiques, dont un est preseie
ici. Leseets de la gamme de frequencedisponible et I''n uence de l'information a priori
sort particulieremern mis en evidence.Les modessuperieurspeuvert apporter descortraintes
supplemernaires lors de l'inversion mais ils posen egalemeh de nombreux problemesquant a
leur identi cation correcte, pour laguelle un algorithme est propose. Nous montrons aussique
I'inversion des modesde Love et de Rayleigh est une technique prometteusepour augmerter
la profondeurde peretration de la methode. De plus, nousavons deweloppe un outil speci que
pour l'inversion descourbesd'auto-correlation qui prend en compte les incertitudes obserees
sur les courbesexperimertales et les propageaux pro Is de vitesseinverses.

L'interpretation complete depuis I'acquisition jusqu'a obterntion desprols de vitesseest
illustr ee par deux exemplesavec un champ d'onde syrnthetique et reel (Liege, Belgique). Les
informations deduites de forages,de tests de refraction classiquesd'enregistrmens avec des
sourcesactives, et de la frequencedu pic H/V sort analysespour valider les resultats des
reseaux.
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Abstract

Microtremors are increasinglyusedin earthquake engineeringto infer the shear-vave velocity
pro le at a given site. Assumingthey are mainly composedof surfacewaves, ambient vibra-
tions recordedby an array of sensorsan be usedto determinethe dispersioncurve. Generally
it provides a large frequencyband dispersion curve and it hasthe advantage of not requiring
arti cial sourcesmaking it particular suitable for urban applications. Due to the data uncer-
tainties and the non-linearity of the problem, the solution of the dispersion curve inversionis
not unique. Direct sear®t methods like the neighbourhood algorithm allow the investigation of
the whole parameter spaceand the introduction of prior information in a rational way. Due
to the limited number of parametersin surface-vave inversion, they constitute an attractive
alternative to linearizedmethods. During this thesis,e cien t toolsbasedon the neighbourhood
algorithm are deweloped to obtain the one-dimensionalNs pro le from passie or active source
experimerts. As the number of generatedmodels is usually high with stochastic techniques,
special attention is paid to the optimization and to the reliability of the forward computations.

The dewloped code has beentested on se\eral syrnthetic models, amongthem oneis pre-
sented here. The e ects of the available frequencyrange and the in uence of the prior infor-
mation are particularly emphasized.Higher modes might bring additional constrairts during
the inversion but they also raise the crucial problem of their correct iderti cation, for which
an algorithm is proposed. We also shav that the inversion of Love and Rayleigh modesis a
promising technique to increasethe penetration depth of the method. Moreover, we deweloped
a speci ¢ tool for the inversion of auto-correlation curves which takesinto accourn the uncer-
tainties obsened on experimertal curvesand propagatesit to the inverted velocity pro les.

The wholeinterpretation chain from eld acquisitionsto the achievemern of velocity pro les
is illustrated by two exampleswith syrthetic and real wave elds (Liege,Belgium). Information
from boreholes,classicalrefraction tests, active surfacewave experimerts, and from the H/V
peak frequencyare analysedto ched the validity of the array results.
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Intro duction

During the last twernty years, seeral major earthquakes (Mexico 1985, Loma Prieta 1989,
Kobe 1995, 1zmit 1999,El Salhador 2001,Bam 2003,...) were directly responsible of tens of

thousandsof personskilled and injured. The damageto human infrastructures and the distur-

bancesof the local life represei an inestimable cost for national and local authorities, usually
requiring international cooperation. Most of the cities and high populated areasare located
on soft sedimerts (valleys, estuaries,recen deposits, ...) the soil structure of which are prone
to amplify seismicwaves (Murphy and Shah 1988, Bard 1994). This phenomenonis usually
called site e ect or site ampli cation sincethe amplitude of the motion highly dependsupon

the local properties of the soil. Consequetly, the risk mitigation requires ne investigationsof
ead geologicalsetting. The investmerns necessaryith convertional techniques,i.e. boreholes,
are prohibitiv e for deweloping courtries and for regionswith a moderate seismicactivity (e.g.
Western Europe). In this context, the European project SESAME (Site E ectS assessmdn
using AMbient Excitation, Project EVG1-CT-2000-00026)vas initiated in 2001to study the

reliability of low cost methods basedon the measuremen of ambient vibrations®. The focus
was put on two methods: the so-calledH/V (Horizontal to vertical ratio) which becamewidely
usedatfter the work of Nakamura (1989), and the more complexarray measuremets basedon
the simultaneousrecordingsof the ambient vibrations at various locations. This thesis, which

hasbeenpartly nanced by the SESAME project, focuseson the array methods, which aim at

inferring the one-dimensionakhear-vave velocity pro le at a given site.

Seismicwave propagationin a geologicalstructure dependson its characteristics: the geom-
etry of the layers,the shearand compressional-ave velocities, the density, and the attenuation
factor inside ead of them. For one-dimensionalgeologicalervironments (property variations
limited to the vertical axis), it can be theoretically shovn that the shear-vave velocity (Vs)
hasthe greatestin uence. Convertional methods to accesghis parameterusually require the
drilling of invasive and expensie boreholeswhich might be very disturbant for the inhabitants
of densecities. The determination of Vs in the layers closeto the surface(down to few tens of
metres)is now possiblewithout destructive methods thanks to the dewelopmen of the surface
wave methods during the last fteen years,i.e spectral analysisof surfacewaves(SASW, Stokoe
et al. 1989, Tokimatsu 1995, Foti et al. 2003,Socco and Strobbia 2004). Surfacewavestravel

1Also called ambient noise, microtremor, ...However, the word "noise" is ambiguous becauseit generally
designatesall apparertly random variations not explained by the current sciertic model. For ambient vibra-
tion methods the noise is separatedin coherert and incoherent noise. The rst category cortains valuable
information.



2 INTR ODUCTION

along the ground surface(at the soil-air interface). In vertically heterogeneousnedia, surface
waves are dispersiwe: their velocity varies as a function of frequency which in turn cortrols
their penetration depth (Aki and Richards 2002). This dispersion property can be usedto
derive Vs versusdepth through an inversion process(Herrmann 1994, Wathelet et al. 2004).

Though attractive on many aspects, the surfacewave methods using arti cial sourcesgen-
erally o er a restricted investigation depth (a few tens of metres usually) due to the limited
frequencyrange of the signals(Jongmansand Demanet 1993, Tokimatsu 1995). Moreover, in
various geologicalenvironment with thick soft sedimens (e.g. 500 m for Grenoblein France),
the site e ects depend alsoupon the properties of the deepstructure. The improvemen of the
penetration is possiblethrough the use of higher energy sourcesrich of low frequency In an
urban context, the use of explosiwe loads or medanical generatorsis limited to avoid distur-
banceto the neighbouring housesand buildings. For regionswith high seismiciy and a dense
obsenation network, the experienceof past ewerts is intensively usedfor inferring the site dy-
namic response. Howeer, for regionswith a moderate seismicit, the obsenation networks are
lessdenseand there are fewer signi cant everts. Consequetly, it is necessaryto dewelop other
techniquesto calculate the site transfer function, for which Vs is a key parameter.

On the other hand, the frequencycortent of microtremor recordis distributed over a wider
range and the measuremen of ambient vibrations through an array of sensorshas appeared
as a promising option to complemenm active sources(Asten and Henstridge 1984, Tokimatsu
1995, Satoh et al. 2001, Bettig et al. 2001, Nguyen et al. 2004, Wathelet et al. 2004). Noise
energydependsupon the sourcelocationsand upon the impedancecortrast betweenthe rocky
basemenh and the overlying soft sedimens (Chouet et al. 1998,Milana et al. 1996). The main
hypothesisfor usingambient vibrations is that they are dominartly composedof surfacewaves,
which allows the dispersion property to be used(Tokimatsu 1995,Chouet et al. 1998).

The properties of the sourcesthat generatethe measuredground excitation are generally
unknown. Consequetly, the interpretation is generallya two-stepprocess.First, the velocity of
the travelling wavesat a givenfrequencyis derived from the processingof simultaneousground-
motion recordingsat various stations. The commonapproatesusedto derive the dispersion
curve from the raw signals can be classi ed into two main families: frequency-vaverumber
methods (Capon 1969,Lacosset al. 1969,Kvaernaand Ringdahl 1986,0hrnberger2001)and
spatial auto-correlation methods (Aki 1957, Roberts and Asten 2004). At the secondstage,
the dispersion curve is inverted to obtain the Vs (and ewvertually the V) vertical pro le, asin
the classicalactive-sourcemethods (Stokoe et al. 1989,Malagnini et al. 1995). Like all surface
wave methods, the obtained geometry is purely one-dimensionaland is averagedacrossthe
array, implying that the technique is not suitable when strong lateral variations are preser.

Ob jectiv es

The objective of this work is the improvemert of existing inversion techniquesin the cortext
of ambient vibration methods in order to obtain Vs(z). A special attention has beenpaid to



INTR ODUCTION 3

the reliability of the inverted pro les and to the possibility of including information from other
typesof experimerts in the inversion process.

The derivation of one-dimensionakhear-vave velocity pro les from surfacewave dispersion
curvesis a classicalinversion problemin geoplysics, generally solved using linearized methods
(Nolet 1981, Tarantola 1987). The inversion of dispersion curvesis known to be strongly non-
linear and is a ected by non-uniquenessj.e. various models may explain the samedata set
with an equalmist. Linearized methods behave poorly in sud cortexts and a Monte Carlo
like approad has beenchosenhere. During this thesis, we have deweloped a new code using
the neighbourhood algorithm (Sanbridge 1999a)for inverting dispersion curves. The software
allows the inclusion of prior information on the di erent parametersand a major e ort has
beenmadeto optimize the computation time at the di erent stagesof inversion. In particular,
we have re-implemerned the dispersion curve computation in C++ languageusing Dunkin's
formalism (1965). The code is tested on synthetic casesaswell ason real data sets,conbining
ambient vibrations and active-sourcedata. In both cases,the role of a prior information for
constraining the solution is emphasized.Moreover, speci ¢ methods are proposedto invert the
auto-correlation curvesto obtain directly the ground structure, to identify and to invert higher
modes, and to include frequencyinformation measuredwith the H/V technique.

Aside, a software padkage has beendeweloped for preparing array campaigns,storing, vi-
sualizing and analysingthe recordedsignals(open sourceproject, GEOPSY). The techniques
for processingraw signalswere revisited and the correspnding algorithms were implemerted
in this uni ed platform dedicatedto seismicprospecting.

Thesis outline

This documen is organizedin six chapters.

Chapter 1 recallsthe available methods for processinghe recordingsof ambient vibrations.
An extertion to active-sourceexperimerts is also detailed. The output of all thesetechniques
is the dispersion curve of surfacewaves (or a parert curve).

Chapter 2 summarizesall the generaloptions that can be consideredto infer the soil prop-
erties from an obsened dispersion curve. The chosenalgorithm (neighbourhood algorithm) is
presemed with more details. A personalimprovemert of this technique is discussedat the end.

Chapter 3 presents the algorithm usedfor computing the dispersion curvesfor one-dimen-
sional models. A number of improvemers are proposedto speedup the calculations and to
ensurea correct answer. The sensitivity of the dispersion curve to input parametersis tested
aswell.

Between the inversion algorithm and the forward computation, a crucial step is the pa-
rameterization of the ground model. The parameter value rangesare chosenand the prior
information is included at this stage. Chapter 4 explainsall the strategiesfor choosing param-
eter basedon synthetic dispersioncurve examples.

Chapter 5 details various uncommoninversions,that include higher modes, Love and Ray-
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leigh modes, the frequencyinformation from H/V techniques,and the direct inversion of auto-
correlation curves.

Chapter 6, the array techniqueis tested on syrnthetic ambient vibrations with various signal
processingmethods. The parallel interpretation of arrays of distinct aperturesis a key aspect
to obtain unbiaseddispersion curves,and hencecorrect Vs pro les. The processingtechniques
are applied to array vibration measuremets in the city of Liege,Belgium and the results are
comparedto other prospecting methods (boreholes seismicrefraction, Cone Penetration Tests,
H/V).



Chapter 1
Measuring wave velocity

During this thesis,we mainly focuson the inversionof the dispersioncurves. This rst chapter
presens the experimertal techniquesthat are commonly usedto measurethem. After the
dewelopmen of the inversiontool in chapters2 to 5, chapter 6 describesthe whole interpreta-
tion chain from the experimertal measuremets of the dispersion curves (by the meansof the
methods descriked in this chapter) to the inversion of the velocity pro les of test sites. The
discussionof chapter 6 is basedon a syrthetic and a real case.

Surface wave methods are divided in two main categoriesbasedon the kind of sources
that generatethe obsened signals, i.e. active and passive methods. The rst onesrecord
vibrations generatedby an arti cial sourcethe frequencyband of which is generally above
2 Hz (Tokimatsu 1995). Their penetration depths are usually limited to a few tens of metres
(Jongmansand Demanet 1993, Tokimatsu 1995, Socco and Strobbia 2004). On the cortrary,
ambient vibrations or microtremors are producedwith sourcesof much larger spectra, making
both methods complememary for investigating deepgeologicalstructures (Nguyen et al. 2004,
Wathelet et al. 2004).

The determination of the dispersion characteristics (dispersion or auto-correlation curves)
from passiwe recordingsis rst reviewed. Frequencywaverumber (f-k, Lacosset al. 1969,
Kvaernaand Ringdahl 1986),high resolutionfrequencywaverumber (Capon 1969,Horike 1985)
and spatial auto-correlation methods (Aki 1957,Roberts and Asten 2004)are the most popular
ones. The processingtechnique usedin this thesisfor active experimert is a particular caseof
the generalfrequencywaverumber method. Additionally, the sensorlayout deployed for the
active surfacewave method is the sameasfor refraction surveysand allows the measuremen of
V, and Vs pro les onthe rst tensof metres,which brings valuableinformation for the inversion
of the dispersion curve (chapter 3).

1.1 Ambient vibrations

The main objective when processingambient vibration recordingsis to measurethe velocity
of surfacewaveswhich varieswith frequency The rst assumptionis hencethat the wave eld
mainly consistsof surface waves. For a horizortally stratied soil structure, the measured

5
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velocities might be the body wave velocities (V, and Vs) or the dispersioncurve of surfacewaves
including the fundamertal and the higher modes (Aki and Richards 2002). If the direction of
propagationis known and if onesinglewave dominates,the velocity canbe calculatedby picking
the arrival time at two sensorsseparatedby a xed distance. Howewer, the ambient wave eld
is made of the superposition of many wavestravelling in any direction. Picking is no longer
possiblebecausethe individual propagating waves cannot be iderti ed, and more sensorsare
necessanto scanall potertial azimuths. Signal processingtechniquesare essetial to retrieve
the apparert velocities. We restrict our work to the vertical componen of the wave eld which
doesnot cortain Love cortributions.

Theoretically, better velocity measuremets are achieved when numeroussensorsare avail-
able to samplethe wave eld at the ground surface. Ideally, the number of stations should be
greaterthan the number of wavespresen at onetime (Asten and Henstridge1984). Practically,
the ambient wave eld is recordedby a limited number of sensordor costand logistical reasons
(ten to a few tens of elemerts per array, Chouet et al. 1997,Saccorottiet al. 2003,Sterbaum
et al. 2003). The three componerts are generallyrecordedsimultaneously at eat station. The
optimum of the array geometryis still a matter of debates. Howewer, the array output must
be idertical for all incident azimuths becausethere is generally no prior knowledgeabout the
characteristicsof the ambient wave eld (Asten and Henstridge1984). Hence,a roughly circular
shape is probably the best option. All sensoramust not necessarilylay on the samecircle, but
there must be a certain kind of rotational symmetry in the sensorpositions. In section1.1.1
on page7, a quartitativ e method is proposedto analysethe e ciency of arrays.

Once the signals are recordedfor a su cient duration (at least half an hour, or longer
for deepsoil structures that require low frequencyinformation), they are processedwith the
three techniquesdescriked hereafter,which extract the samevelocity information from the raw
signalsin three di erent ways. Agreemem betweenthe three methods is usually expected for
good quality results. Testsof the three processingmethods on a syrnthetic and a real caseare
given in chapter 6. Other methods, like multiple signal classi cation (MUSIC, Sdimidt 1981,
Cornou et al. 2003)are not consideredhere.

1.1.1 Frequency-w avenumber metho d
Principles

The horizortal velocity is calculated for various frequency bands. The raw signalsare rst
divided in short time windows the length of which may depend upon the consideredfrequency
band. The optimum window length is discussedin sections6.1.2 and 6.1.3 from syrnthetic
signal analysis. Evertually, a pre-processingmethod may be usedto reject certain parts of the
measuredsignals(transient or saturated signals,Bard 1998). A Fourier transform is calculated
for the signal of ead sensorafter a proper cutting of the current time window (a 10% cosine
taperis applied). The frequency-vaverumber transformation itself is calculatedin the frequency
domain on the cut signals.
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Frequency-vaverumber (f-k, Lacosset al. 1969,Kvaernaand Ringdahl 1986) analysisas-
sumeshorizortal plane waves to travel acrossthe array of sensorslaid out at the surface.
Consideringa wave with frequencyf , a direction of propagationand a velocity (or equivalertly
kx and ky, waverumbersalong X and Y horizortal axis, respectively) the relative arrival times
are calculated at all sensorlocations and the phasesare shifted accordingto the time delays.
The array output is calculated by the summation of shifted signalsin the frequencydomain.
If the wavese ectively travel with the given direction and velocity, all cortributions will stadk
constructively, resulting in a high array output. The array output divided by the spectral power
is called the senblance (Lacosset al. 1969, Asten and Henstridge 1984). The location of the
maximum of senblance in the plane (ky, ky) provides an estimate of the velocity and of the
azimuth of the travelling wavesacrossthe array.

The velocity correspnding to the maximum of senblanceis seardied betweenlimits which
depend upon ead particular software implemertation. This part is detailed on page1l1. For
ead time window, a velocity value is calculated, and an histogram is generally constructedfor
eat frequencyband. Examplesof sud results are found in chapter 6.

In the caseof waves travelling simultaneously in various directions (usual situation for
ambient vibrations), the assumption of uncorrelated signals may not be satis ed, leading to
incorrect velocity estimates(Goldstein and Archuleta 1987). With a limited number of sensors,
stacing during a long enoughperiod of time (a few tens of minutes) is then necessaryo obtain
correct velocity values. This issuewill alsobe detailed in chapter 6.

Theoretical array response

The theoretical frequency-vaverumber responseof an array is a senblance map that would
have been obtained for a single vertically incident plane wave ((k>(<l>; k§l>) equal to (0;0) in
equation 1.2). It is also called the array transfer function becausethe array output is the
convolution of the wave eld and of the theoretical frequency-vaverumber response. The nor-
malized theoretical array responsein the (ky, ky) planeis given by
1 X ’
Rin (Kx; ky) = 2 e Jlooxitkyyi) (1.1)
i=1

wheren is the number of sensorgn the array, and (Xx;;y;) aretheir coordinates. For onesingle
plane wave Si(f) = A(f )d ik’ +%iki” 2 ft+ ) crossingthe array at waverumber (k&; k{Y) an
at frequencyf , recordedat sensori, at time t and with a phase , the array output is

X0 , 2
R(ky; ky;f) = Si(f)e xirion) = n?A%(F)Rp (ke kP1ky kD) (1.2)

i=1

where A(f ) is the amplitude spectrum. The array output is equalto the theoretical response
translated by vector (kf}’; k§,1)) and multiplied by the squareof the amplitude. For multiple
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plane wavestravelling acrossthe array, S® to S(™), the array output is

! 2

X X . A
R(k; ky; f) = sP(f) el 2 RO(Kky;f) (1.3)

i=1 =1 1=1

whereR(") are the array outputs for single plane wavesde ned by equation (1.2), and Si(') the
wave | recordedat station i. In this case,the array output is always lower than the sum of
translated theoretical responses,the maximum being readed when all wavesare in phase.

! ! "#l !

Figure 1.1: Theoretical array responsesfor 25 sensors.Array geometries: (a) circle, (d) Cartesian grid, and
(9) spiral. (b), (e), and (h) Theoretical array responsesin the plane (ky;ky). (c), (f), and (i) Sectionsacross
theoretical array responsesfor various propagation azimuths (628 valuesbetween0 and 2 ).

From equation (1.1), Ry, always exhibits a certral peakthe value of which is one (ky and
ky = 0) and lateral aliasing peaksthe amplitude of which is lessthan one. Beyond a certain
limit which is called the theoretical aliasing waverumber, this pattern is repeated due to the
periodic nature of &*. Below this theoretical limit, equation (1.2) shows that the position
of the highest peak of the array output is directly linked to the apparen velocity and the
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azimuth of the propagating wave. For a complexwave eld descriked by equation (1.3), and
assumingthat all cortributing wavesare in phaseto get equality, aliasingis likely to occur for
lower waverumbers due to the summation of the lateral peaksof Ry,. Hence,Ry, is of prime
importanceto de ne the potential aliasinglimits (kyax) Of the chosenarray geometry On the
other hand, it is obvious that the thinner the certral peakis, the more capableis the array to
distinguish two wavestravelling at closewaverumbers. The resolutionlimit (kmi, ) is cortrolled
by the width of the certral peak. For simple array geometries,for instance a cartesiangrid,
Kmin and kmay are linked to the minimum and maximum distance between sensors.For usual
irregular array geometries,Ry, is necessaryfor the de nition of objective waverumber limits.

We de ne practical rulesfor the aliasingand resolution limits from Ry,, setting kmax at the
rst peak exceeding0.5 (or -3 dB) and k,;, being measuredat the mid-height of the certral
peak (Woods and Lintz 1973, Asten and Henstridge 1984,Ga et 1998). If the aliasing peaks
are lessthan the certral peak,andif a singlesourceis acting, knha.x doesnot e ectively limit the
power of the array. Howewer for multiple sources,ewen if the aliasing peaksare lessthan the
certral peak,the superposition may create artefacts leadingto the confusionof aliasing peaks
with the main one. If the aliasing peaksare of the sameorder of magnitude asthe main peak,
the wavenumber limit is always knax =2. In a safeapproad, it is better to limit the valid array
output to kmnax =2 in all cases. Theserules are comparedto frequency-vaverumber output in
chapter 6.

Array geometry Number of sensors| Kmin  Kmax
Perfect circle 25 0.024 1.00
Cartesiangrid 25 0.022 0.25

Spiral 25 0.036 2.75
Perfect circle 10 0.024 0.40
Three triangles 10 0.038 0.36
Irregular circle 10 0.026 0.15

Table 1.1: Properties of the array geometries. For ead array, the minimum and maximum wavenumbers
(rad/m) deducedfrom the theoretical frequency-wavenumber responsesin gures 1.1 and 1.2.

The theoretical array responseis calculated for various array geometriescortaining 25 and
10sensorsn gures 1.1and 1.2, respectively: a perfectcircle (gures 1.1(a)to 1.1(c),and 1.2(a)
to 1.2(c)), a Cartesiangrid (gures 1.1(d) to 1.1(f)), a perfect spiral (gures 1.1(g) to 1.1(i)),
an ensenble of three triangles rotated by 40 (gures 1.2(d) to 1.2(f)), and an irregular circle
(gures 1.2(g)to 1.2(i)). The aperture! is always around 100m. The grey curve of plots (c), (f)
and (i) are sectionsacrossthe theoretical array responsefor various propagatingazimuths. The
kmin and the knax are estimatedin table 1.1. The width of the certral peakat its mid height
presens small variations versusthe geometries.For instance,the perfectcirclein gure 1.1(a)
hasan aperture of exactly 100m and a kn,j, around 0.024rad/s. On the other hand, the spiral
array in gure 1.1(g) has an aperture of 98.5m and a ky,;, around 0.036rad/s. Hence,Kknin
cannot be deducedfrom the aperture by a simplelinear relationship. On another hand, kpnax IS

IMaximum distance betweenany pair of sensors
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strongly dependent upon the number of sensorsand their geometries.When multiple wavesare
travelling acrossthe array at the sametime, the performancesf an array dependalsoupon the
"ground” level of its theoretical array response. For example,the rectangular array is almost
at between 0.05 and 0.2 comparedto the circular array, which meansthat two senblance
peaksseparatedby kni, arenot a ected by ead other in the summation of equation (1.3).

The arrays of gure 1.2with 10 sensorsare more commonthan arrays with 25 sensorsput
their available waverumber range betweenk,,i, and knax is usually not large enoughto obtain
a completedispersion curve. Hence,various array apertures and geometrieswith overlapping
waverumber rangesmust be planned beforeany experimert. It can be basedon a rst guess
of the dispersion curve calculated with common properties for the expected geology The
waverumber rangesmust cover the whole dispersion curve down to the expected resonance
frequency This limit only appliesto arrays for which the vertical componers are processed.
Extention towards lower frequenciesmight be necessaryif horizortal componerts are planned
to be processedchapter 6).

Implemen tation

The f-k algorithm has beenimplemerted in C++ as a plug-in module of the seismicsignal
databaseGEOPSY?. The Fourier transform is calculated with the FFTW padkage (Frigo and
Steven 2005, www. t w.org) which allows any arbitrary number of samples,not restricted to
powers of two.

In this work and for the f-k method, we considerthe senblance as the ratio of the array
output over the spectral power. The seart of the maximum of senblance is performed with
a rough gridding of the plane (ky; ky). The exact maximum is then re ned within the eight
cellsthat surround the cell with the highestvalue. A secondarygrid is constructed with 16
cells inside the area delineated by the preceding9 cells (8+1). The cell with the maximum
senblanceand its 8 surrounding cellsdelineatean areathat it is 9/16 smallerthan the original
area. The processis repeated until reading a su cient precision. The seart is performed
in the waverumber domain cortrary to other implemenations (cap, Ohrnberger 2001) which
work in the slovnessdomain. The advantage of the waverumber domain is that the size of
the peaksare not varying with the frequency E ectiv ely, equations(1.2) and (1.3) show that
the array output is the sum of the translated theoretical array responsesof the most energetic
waves,which do not decreasdhe sizeof the main peak. Consequetly, in waverumber domain,
the maximum of senblance can be searted for all frequencybandswith the samegrid step.
To not missthe true senblance maximum, the grid cell must be lessthan a half of Ky, .

From the considerationsof the precedingsection,it is uselesso seart for peaksabove K ay -
Moreover, the velocity of the senblance peak must be consistem with physical limits of the
Rayleigh or Love dispersion curves (section 3.1.50n page40). Consequetly when calculating
the array output for a pair (ky; Ky), if the velocity corresmnding to the waverumber ( k)%Tkg)

2Databasewith a graphical userinterface (Qt libraries, www.trolltec h.com) dedicatedto seismicprospecting
and deweloped during this thesis. Its dynamic signal loader is able to work on very long recordings (hours) with
an e cien t memory and time consumption. It works on any desktop PC (Linux or Windows) or Mac.



12 CHAPTER 1. MEASURING WAVE VELOCITY

and the current frequencyis not betweencommonlimits (e.g. [150 3500]m/s), a zerovalueis
returned.

1.1.2 High resolution metho d

With the aim of improving the f-k method, Capon (1969)addedweighing factorsto eat sensor
cortribution in the computation of the array output. They are calculatedin order to minimize
the energy carried by waverumbers di ering from the consideredone. The high resolution
frequency-vaverumber technique is theoretically able to distinguish two waves travelling at
closewaverumbersin a better way than the f-k method.

Principles

If the ambient wave eld is recordedwith n sensordocated at !ri , let X (!ri ;1) beingthe spectra
calculatedfor station i

I xd b |
X(1i;0)= Sp(h)d®m ™+ (1;;1) (1.4)

m=1

|
where! = 2 f isthe angularfrequency S, (! ) is the complexspectrum and k, is the waverum-
ber vector of the plane wave triggered by sourcem, and is the uncorrelatedpart of the signal
("the noiseof the ambient vibrations"). The array output is

X

ROy = w0 )X (hiyeikh (1.5)

i=1
whereW; (! ) are arbitrary weighting functions. The f-k method preseited in section1.1.1uses
constart weighting functions equalto 1. In this case,equations1.3 and 1.5 are equivalent.
Estimates of the wave Yelocity at frequency! (!k (1)) are henceobtainedI by maximizing
the complexmodulus of R('k ;! ) in the wavernumber plane. At the maximum, 'k equalsto K,
the waverumber of the dominarnt plane wave. Using matrix notations,

R=AWX (1.6)
where,
h Loy
A = ejkrl;...;ejkrn
2 3
W) 0 ::: 0
0 D
W = 1.7
g o 0 é 4.7
0 0 WL(Y)

X
|
B
>
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The frequency-vaverumber cross-sgctrum is hence
P=AWCWH"A" (1.8)

whereC = E[X X "]isthe crossspectral matrix evaluated usingfrequencyor spatial smoothing,
and " denoteshermitian conjugate operator.

Capon (1969) introducedparticular weighting functions optimizecll by minimizing the signal
power of WCW" for all waverumbersdi ering from the consideredk , which leadsto

C A

= " 1.
ARC 1A (1.9)

Theoretically, this high-resolutionmethod allows higherresolution. This assertionis chedked
for a simulated and a real casein chapter 6.

Implemen tation

No particular code has beendeweloped for the high resolution method during this thesis. We
used the software cap(Ohrnberger 2001, Kind 2002, Ohrnberger et al. 2004a, Ohrnberger
2004b). cap can accessa GEOPSY databaseto obtain the input signals. It was available
within the SESAME European project (Site E ectS assessménusing AMbient Excitation,
Project EVG1-CT-2000-00026).

1.1.3 Spatial auto-correlation metho d

The spatial auto-correlation techniquestake advantage of the random distribution of sourcesn
time and spaceto link auto-correlation ratios to phasevelocities. In the caseof a single-\alued
phasevelocity per frequencyband, Aki (1957) demonstratedthat theseratios have the shape
of Besselfunctions of order 0, the argumert of which is dependent upon the dispersion curve
valuesand the array aperture. Bettig et al. (2001) brought someslight modi cations to the
original formula to extend the method for irregular arrays. Those conceptsare briey recall
in the next section. An original inversion strategy has been deweloped for auto-correlation
ratios during this thesis (section 3.3). Examplesfor syrthetic and real casesare discussedn
sections5.2,6.1.5,and 6.2.5.

Principles

The spatial auto-correlation function betweentwo sensorss de ned by (Aki 1957)

Z

Vo(t)v (t)dt (1.10)
0

()=

=~

wherevg andv arethe signalsrecordedduring T secondst two stations separatedoy a distance
. If the signalsare ltered with a narrow frequencyband around! o, the auto-correlationratios
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de ned by

(') = EO: 3 (1.11)

are calculated for all pairs of receiers. For a given inter-distance , Aki (1957) demon-
strated that the azimuthal averageof ( ;! ) has the shape of Besselfunctions (same as
equation (3.47)).

Mo
0 (1.12)

where Jy is the Besselfunction of the rst order and c(! o) is the dispersion curve. Equation
(1.11) is computedin the time domain on Itered signals(a taper in the frequencydomain is
usedto ensurea zerophase Iter). Another expressiornis alsoavailable in the frequencydomain
which avoids one computation of the Fourier transform, but its results are not as preciseas
equation (1.11) (Metaxian 1994).

Like for the f-k method, the raw signalsare cut in smallertime windows (section1.1.1) on
which the auto-correlation ratios are computed. Consequetly, for eah frequencyband, for
eah range of inter-distance, and for ead individual time windows, an azimuthally averaged
auto-correlationratio is calculated. The resultsare generallypresered under the form of auto-
correlation curveswith error bars plotted againstfrequencyor inter-distance(e.g. gure 6.14).

(:'o)=Jo

Implemen tation

The computation of auto-correlation ratio from recordedsignals has beenimplemened as a
plug-in module in GEOPSY. The FFTW algorithm is usedfor all Fourier transforms.

1.2 Articial sources

The caseof one single and instantaneouspoint sourceis consideredhere. The sensorsand the
sourcepoints are usually distributed along a line. Contrary to ambient vibrations, there is
a total cortrol over the sourceparameters(location, type of source,frequency cortent, time
of occurrence,...). On the recordedsignals, the body waves (P and/or S) and the surface
wavesare generallyvisible. The last onesappear at the end of the signalwith high amplitudes
and a triangular dispersion pattern. During the last 20 years, surface wave properties have
beenintensively exploited by various authors. The rst applications consist of inverting the
measureddispersion curve as the fundamertal Rayleigh mode including evertual on or more
clearly identi ed higher modes(McMechan and Yedlin 1981,Gabrielset al. 1987,Stokoe et al.
1989, Herrmann 1994, Malagnini et al. 1995, Foti 2000, Socco and Strobbia 2004). Inversions
of the measuredcurve taking into accoun the mode cortributions or inversionsof the full
waveformswererecenly proposed(Yoshizava and Kennett 2002, Forbriger 2003b).

Here, we are only consideringthe inversion of the theoretical dispersion curve to adopt an
approad consisten with the ambient vibration method for which no other type of inversionis
currently feasible. The body and the surfacewave are henceanalysedseparately
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1.21 P Sy refracted waves

Classicalrefraction (Mota 1954)is achieved with sourcesplaced at the two endsand at the
middle of the line. Sourcesare locatedat sensormpositionsin orderto cortrol the time reference.
The rst P-wave arrival times are picked on the signals. If the ground structure is made of
inclined homogeneousayers with increasingvelocity with depth, the traveltime-distance plot
allows the geometryand the seismicvelocity of the layersto be retrieved (Mota 1954). With a
limited setof data (24 valuesmaximum) and consideringthe experimertal uncertainties which

can be high in noisy conditions, the solution is rarely unique and seeral V, pro les may t the
data in a similar way.
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Figure 1.3: Referencemodel for refraction synthetic traveltime-distance plot. (a) Traveltime-distance plot
for three sources. (b) Interfacesof the referencemodel and the ray paths with the minimum traveltimes. (c)
Velocity pro le at horizontal distance 0.

With the aim of extracting the di erent solutions explaining the experimertal traveltimes
in an objective way we dewloped a simple method basedon the neighbourhood algorithm
(Sambridge 1999a,chapter 2). The method, the principlesof which areidertical to the inversion
of dispersioncurves (Wathelet et al. 2004), generatestwo random one-dimensionaV, pro les
with a xed number of layers, which de ne a model with inclined layers. The V, value within
ead layer is randomly choseninside an interval de ned from a prior knowledgeof the geological
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Figure 1.4: Inversion of synthetic traveltime-distance plot. (a) Traveltime-distance plot for three sources
calculated for the generatedmodels. (b) Interfacesof the generatedmodels. (c) Generated velocity pro les at
horizontal distance 0.

structure. For eat generatedmodel, the ray paths are analytically calculatedusingthe Snell-
Descarterefraction law for inclined interfacesand the traveltimes are computed for all source-
receier distances. The experimertal time-distancevaluesare comparedto the calculatedones
using the following mis t function:
Y
misf it = t EX] T
L terr

2
(1.13)

where, tey, is the experimertal arrival time corrected by the initial time delay, tcac is the
calculated arrival time for the currert model, te,, is the phasepicking error or equalto tey, if
no error estimation is available, and n is the number of receivers. The experimertal error, which
depends upon the sharpnessof the P-wave arrival and the signal to noiseratio, is manually
estimated. This method was tested with succeson synthetic models with constart velocity
layers and dipping interfaces,using two shots made in opposite directions. This technique is
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usedfor our real test casein section6.2.1on page6.2.1.

The method is illustrated for a referencemodel with three layers (gure 1.3(b)). The
constart velocity inside ead layer is represeted in gure 1.3(c) by the V,, pro le measuredon
the left side of the model (distance=0). The thin bladck linesin gure 1.3(b) are the ray paths
with the minimum traveltimes correspnding to the plot of gure 1.3(a). Figure 1.3(a) is the
traveltime-distanceplot obtained with three sourcesplacedat the two extremities and in the
middle of the section. Two inversion processesre launched generating 30,000models among
which 18,000have a mis t lower than 0.02. The lowest mist found is 0.00063.The generated
modelsare shavn in gure 1.4(b) and 1.4(c). The correspnding traveltime-distanceplots are
visible in gure 1.4(a). Considering0.02asan acceptablemis t, the depth of the rst interface
is correctly retrieved but the depth of the secondone is poorly constrainedby the refraction
experimert, unlessa very high precisioncan be achieved while picking the arrival phaseof the
distant receivers. From gure 1.4(c), the velocity is correctly inverted down to 16 m. Below
16 m, if all modelswith a mist lower than 0.02 are equally acceptable,any velocity between
1000and 4000m/s is equally valid to explain the experimert results.

1.2.2 Sy refracted waves

The practical requiremens and data processingfor Sy waves are very similar to the P Sy
case.Shearwavespolarizedin the transversaldirection are generatedby beating on both sides
of a loadedwood timber oriented perpendicular to the recordingline (Jongmans1992). Both
sidesare usedto remove the P-wave cortribution by the meansof negative staking. The
signalsare recordedon horizorntal sensorsghe main axis of which is oriented perpendicular to
the receiwer line. The processingof the traveltime-distancecurvesis exactly the sameas for
P Sy refraction.

1.2.3 Surface wave inversion

The sensorsalong the line are consideredin the sameway as for ambient vibration arrays.
Howeer, linear arrays have particular theoretical responsesthat prevent from using exactly
the samealgorithms. An exampleis calculated for 24 receivers placedevery 2 m in gurel.5.
The vertical aliasing lines are visible at every multiple of (= Knax). Hence,kmax =2 corre-
spondsto =4 M=2 smpiing (ONe-dimensionalsampling theorem) where is the wave length.
The maxima of the senblanceare seartied only in the known direction of propagation (supple-
mertary parameter). Also, the signalsare always transient which meansthat sliding windows
cannot be calculatedto evaluate the uncertainties. A singletime window of xed duration is
thus taken for all frequencies. This unique time window is processedn the sameway asin
sectionl1.1.1on pagel.l.1. No histogramis constructed(section1.1.10on page6) but the sem-
blanceis plotted with a colour grid in the frequency-elocity plane. The maxima of senblance
delineate the dispersion curve with ewerntually higher modes as sketched in gure 1.6 for an
explosiwe load shot at 20 m of a line of 24 receiwers. The details of this experimert are given
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in section6.2.1,0n page128.
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of 24 sensorsplaced every 2 m along X axis. Figure 1.6: Example of a f-k analysis for surface
wavestriggered by an explosive shot.

Implemen tation

Like the generalf-k algorithm, this linear f-k has beenimplemeried as a plug-in module in
GEOPSY. The resultswere comparedwith the slartstack method available in the surfacewave
padkagedistributed by Herrmann (1994).

1.3 Conclusions

In this chapter, we preseited seeral methodsto extract the dispersion(or the auto-correlation)
curvesfrom ambient vibration wave elds and from triggeredwaves. In the next chapters, we de-
velop an inversiontechnique to infer sub-surfaceproperties from the dispersioncurve. In chap-
ter 6, the signal processingmethods brie y introduced in this chapter (f-k, high-resolution,
auto-correlation, refraction tests and surface wave inversion of active experimens) are illus-
trated by syrthetic and real eld experimerts.



Chapter 2
The Inversion algorithm

After the estimation of the dispersionor the auto-correlation curves,an inversiontool is dewel-
oped to infer the ground structure, especially the seismicvelocities V, and Vs. Chapters 2 and
3 are dedicatedto the inversionprinciples and to the forward algorithm, respectively.

This chapter recallsthe basic conceptsinvolved in the inversiontheory. Se\eral inversion
methods of commonusein geoplysicsare briey reviewed. The principles of the neighbour-
hood algorithm (Sambridge 1999a)are detailed becauseit has beenchosenas the core of our
dispersion curve inversiontool. Finally, an improvemen to the standard neighbourhood algo-
rithm is proposedwhen the external limits of the parameter spaceare not xed (conditional
neighbourhood algorithm).

2.1 De nition
forw ard problem
Mo del \ Observ ables
T inverse problem T
4 Unknowns 4 Data

4 Physical properties 4 Measuremets

Figure 2.1: De nition of an inversion problem

Physical properties are usually measuredthrough a scieri c experimert. For instance,
Torricelli invernted the mercury barometerto measurethe atmosphericpressurePaum, . Pam IS
estimated by comparingthe height of the mercury column (hperc) With a graduated scale. If
Pam IS known, hyerc can be calculated with a simple linear relationship involving the density
of mercury.

P
hmerc = ﬁtn; (21)

This is the forw ard problem . Howewer, during the scieriic experimert, the obsenable is

19
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not the pressurebut the height of mercury. Henceequation (2.1) must be inverted to calculate
the model parameter P, from the observable quantity hpyerc. The inverse problem is
solved with the following equation

Patm = 135hmerc (2-2)

This is an exampleof the inversion of a linear problem which is pretty simple and always
solved analytically. In this case,the number of unknowns is one as well as the number of
obsenable (or data). Scieric models are generally completely described by the means of
morethan oneparameter. With thesemodels, it is alsopossibleto calculatevarioustheoretical
characteristics. For instance,a characteristic of the model may be a curve which is numerically
represeted by a vector of nops componerts. Hencethe forward problem is a function that
transforms a parameter spaceof dimension ny; am (NUmMber of involved parameters)into the
obsenable spaceof dimensionngps.

If the function is linear, the linear algebrais usedto solved the inversion problem. In this
case,there is no absolute limit for the number of obsenablesand the number of parameters.
If Nops IS lessthan nyaram, thereis an in nite number of solutionsfor the parametervector. On
the cortrary, if neps is greaterthan ny,am, a least-squaremethod is generallyusedto nd the
best set of parameters.

Howeer, in most situations, the relationship is not linear and even more, the forward
problemcannotbe solved analytically. Evenif the forward problemhasan analytical expression,
there are very few special casesvherethe inversionproblem is also analytical. Hence,in most
casesan inversionmethod is necessaryo calculatethe set of parameterscorrespnding to the
obsenables. The number of solutions of the inverseproblem is generallya complexissue. For
instance, if the forward function is simply y = x? betweentwo one-dimensionalspaces,the
inverseproblem may have zero, one or two solutions. The non-uniquenesss hencespeci c to
eah problem and hasto be studied on a case-ly-casebasis.

All sciertic obsenables are measuredwith a certain degreeof error, even if it is not
explicitly quartied. In Torricelli's experimert, the height of mercury can be measuredfor
instance down to a 0.5 mm precision. In this one-dimensionallinear example, the error on
Pam is easily deduced. For multi-dimensional linear problemsthe error propagation is also
possible. But for non linear and multi-dimensional problems, calculating the errors on the
model parametersfrom the errors on the acquired measuremets is not straightforward.

2.2 Available metho ds

All forward problemscan be summarizedby

O=[04;::1;0n,.0" = F([PL 5 Prpwram]') (2.3)
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whereQ; arethe obsenablevalues and p; arethe model parameterg. Generally a newfunction
L 2 < is constructed® which vanisheswhenf is equalto O. The inverseproblem is equivalert

L([O1; 11 Ongy, 1™ T (IP1i 221  Prgaram ') = O (2.4)

Practically, the minimum of L is sear®ied acrossthe parameter spacein dierent ways
briey explainedin the following sections.

2.2.1 Gridding method

If the number of parametersis small, lessthan four?, it is conceiable to calculate L for eah
conbination of parameters. Theoretically, this method o ers the best exploration of the pa-
rameter spacecomparedto all other techniques. Howewer, consideringthe number of forward
problemsto solwe, this method is very limited. For example,if the prior range of eadh param-
eter is discretizedwith 50 samples,if the time to calculate oneforward problem is one second,
and if the dimensionof the parameterspaceis v e, the total time required for the inversionis
10 years.

2.2.2 lterativ e metho ds

Starting from a rst estimation of the model parametersor from whatever appropriate model,
the iterative method cornvergesto the minimum of L by modifying the current model according
to the local properties of function L. In the caseof Newton-Raphson,damped least-squareor
gradiert methods, the partial derivativesor the Jacobianmatrix at the current model oriertates
the descen towardsthe solution (Nolet 1981, Tarantola 1987,Herrmann 1994,...). Calculating
the partial derivativesallowsa linearization of the problemand linear algebrais usedto calculate
a new estimate of the solution. The processis repeatedthrough se\eral iterations until nding
an acceptableminimum. Downhill simplex (Presset al. 1992)is an other iterative method that
requiresonly function ewaluations, not derivative. It is basedon geometricalprinciples.
Thesekinds of methods are the exact opposite of the gridding method. The exploration of
the parameterspaceis limited to the path followed during the successig iterations. They are
mostly usedfor high dimensionalparameter spacedor their ability to quickly corvergeto the
solution. The number of function computationsis very small comparedto all other methods.
If there are morethat oneminimum or if the function L hasa complexshape with multiple
secondaryminima, those methods are likely to corvergeto one of them which is probably not
the unique and the absolute minimum. The nal solution highly dependsupon the starting
model. The non-uniquenessa commonphenomenonin inverseproblems(Sanbridge 2001),can

LAlso called data curve, measuremets, or target curve.

2Also called unknowns or, simply, parameters.

3This function is called the mist, the cost, the error or the residual function. It is a real number
4According to the time neededfor one computation.
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be apprehendedonly by a manual selectionof "good" starting models. Thesemethods are then
inadequatewhen the nonlinearity becomesse\ere, and can produce optimistic resolution esti-
mates, usually calculatedaround a singlebestdata-t model (Sanbridge 2001). Shapiro(1996)
showved, that the solutions obtained from classical surface wave inversion sthemes(damped
least-square)are too restrictive and uncertainties are not correctly estimated.

From the starting model, the iterativ e processmay leadthe current model to whatever part
of the parameterspace beingin this case<" °. It dependsupon the unknown shape of function
L. Indeed,L is known for only a discretenumber of points wherethe forward problem hasbeen
solved. In this framework, it is impossibleto guarartee that the current model stays within a
de ned zoneof the parameter spacefor all iterations. The limits of this zoneare adjusted so
that it enclosesall potential solutions, given the prior knowledgewe have about the model.

2.2.3 Neural Networks

Michaelsand Smith (1997) suggestedo useneural networks to invert surfacewaves, inferring
the sub-surfaceproperties. Arti cial neural networks are computer programsthat simulate the
biological neural networks. Calderon-Macas et al. (2000) also usedthem to inverseelectrical
data. From input stimuli (= obsenablesvalues),it providesan output set of values(= model
parameters). As a human brain, it needseducationto react correctly in eat situations. Hence,
the neural network usedfor surfacewave inversionis trained with seriesof the syrthetic signals
for which the model is perfectly known. To summarize,the network is a generic mean of
mapping obsenable to model parameters.

A correct behaviour is obtained only if the network hasbeentrained with syrthetic models
closeto the true model. Hence,this method cannot be usedto scanall potential modelsthat
correspnd to experimertal data. Moreover, the error propagation cannot be included in an
easyway and the non-uniquenesss newer handled.

2.2.4 Monte Carlo metho ds

These methods are basedon a uniform pseudo-randomsampling of the parameter space. If
their principle is not new, they gain succesamongstthe geoplysicistsduring the last 20 years,
due to the increasingpower of modern computers. The question addressedoy sud methods
is not only nding the model with the bestdata t but alsoto retrieve information about the
resolution power of a particular application. This area of statistical inferenceis reviewed for
exampleby Edwards (1992), Mosegaardand Tarantola (1995), Sanbridge (1999b). The role
of prior information is investigated by all these authors but especially by Scalesand Tenorio
(2001). The parameter spacedoes not generally extend to <" like in the caseof iterative
methods but it is restricted to a volume de ned by the parameterprior ranges. All generated
models are always con ned in this volume.

When the dimensionality of the parameter spaceincreases,the basic random generation

5The number of dimension of the ensenble is n = Npar am
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of models becomestotally ine cient. This is why seral re ned approadeswere deweloped
during the last two decadesfor instancethe simulated annealing(Rothman 1985,Senand Sto a
1991)and the geneticalgorithms (Sto a and Sen1991,Lomax and Snieder1995,Bosdetti et al.
1996, Yamanala and Ishida 1996). There are alsomarny variants of thesemethods, combining
them with neural networks or with gradiert methods (e.g. Chunduru et al. 1996,Devilee 1999,
Bosdetti and Moresi2001). The objective of thesetechniquesis to seeka model with a globally
optimal data mist value. Thesemethods and their variants usually needempirical tuning of
seeral parametersthat cortrol the inversion process,ensuring computational e ciency and
robustnessagainst entrapment in local minima.

Recettly, Sanbridge (1999a) proposedan ertirely di erent method basedon the partition
of the parameter spaceinto Voronoi cell$( neighbourhood algorithm). It hasonly two tuning
parametersand it is claimed as self-adaptive in searting a parameter space. The objective,
which is di erent from the previously mertioned methods, is to sample(in an optimal situation)
all the regionsof the parameterspacewheremodelswith acceptabledata t arefound. This last
technique has beenchosenfor our dispersioncurve inversiontool. Its principles are examined
with more details in the next section.

2.3 The neighbourho od algorithm

The Voronoi decompsition of the parameterspaceis the baseof an approximation of the mis t
function L which is progressiely re ned during the inversion process. The appraximation is
set as constart inside eat cell and the mist value calculated at the certral point is a ected
to the whole cell. A two-dimensionalparameter spaceis given asan examplein gure 2.2(a).
The bladk dots are somemodel points for which a mist is calculated.

The neighbourhood algorithm needsfour tuning parameters:

it max 1S the number of iteration to perform;

Ngo is the number of models chosenat random inside the parameterspaceat the beginning of
the inversion;

ns is the number of modelsto generateat ead iteration,

n, is the number of best cells (with the lowest mist) wherethe ng models are generated.
The inversion processis composedof the following phases:

1. a set of ngg models is randomly generatedwith a uniform probability in the parameter
space;

2. the mist function is calculatedfor the most recenly generatedmodels;

3. the n, modelswith the lowest mist of all models generatedso far are selected;

8t is a unique decomposition of the spaceinto n cellsaround n points p;. The cell around point p; is de ned
by the ensenble of points that are closerto p; than to whatever other point p; wherej 6 i.
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4. generatean averageof 1= new sampleswith a uniform probability in eah selectedcell;

5. add the ng new samplesto the previousensenble of modelsand go bad to (2).
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Figure 2.2: Voronoi cellsfor a two-dimensional parameter space(from Sanbridge (1999a)).

Figure 2.2(a) is an exampleof a two-dimensionalparametershowving the models(black dots)
and the limits of the Voronoi cells. ng (=9, in this case)modelsare generatedand the grey cell
hasthe lowestmis t. In this example,seven new modelsare generatedin onecell (n, = 1, and
ns = 7). Figure 2.2(b) depicts the Voronoi geometry after the rst iteration. The size of the
original cell decreasess the sampling rate increases.If the cell with the grey outline hasthe
lowestmis t, the density of samplingwill not decreasesystematically after ead iteration. This
is an interesting property of the Voronoi geometrythat allows the certre of samplingto jump
from placeto place,whilst always samplingthe most promising n, regionssimultaneously

In the neighbourhood algorithm, a random walk (Gibbs sampler) is performedwith a uni-
form probability density function inside the cell and zero outside. A walk is a sequenceof
perturbations to a model along all axis. The modi ed model is statistically independen of the
original model. Asymptotically, the samplesproducedby this walk will be uniformly distributed
inside the cell regardlessof its shape. To con ne the random walk inside a particular cell it
is mandatory to calculate the multi-dimensional limits of the cell. Calculating the complete
Voronoi geometryfor high dimensionalspacedecomegractically impossiblewhenthe number
of models increases. Sanbridge (1999a) proposedan original algorithm to compute only the
limits along lines which are parallel to axis, in a preciseand e cient way. Theselines support
the successie segmets of the random walks.

There are only a few number of cortrol parameters: ngg, ng, N,, and it ,ax Which is the
maximum number of iterations. The neighbourhood algorithm is more exploratory if the ng
new samplesare distributed on many cellsand it optimizes more if they are restricted to the
very few best cells. Typical valuesfor the tuning parametersare 100for ngg, ng, N;. To forcea
better optimization, n, may be setto 5, 10 or 50. Testsshawv that generallybetter mis ts are
obtained with fewer iterations if n, is low, but the inversionis more trapped in local minima.
The exploratory mode (e.g. n,=100 and ns=100) usually provides better nal mists if the
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inversionis conductedwith a great number of iterations. The number of iterations rangesfrom
50 to 200. This makes a total of 5,000to 20,000generatedmodels. Comparedto linearized
methods the number of forward computations is much greater. Consequetly, the forward
computation hasto be correct for eat parameter set without a visual chedk and it must be
highly optimized to reducethe total computation time. Theseaspectsare analysedin chapter 3
when designingthe dispersioncurve algorithm.

The neighbourhood algorithm like all other Monte Carlo techniques relies on a quasi or
pseudo-randongenerator. A basicrandom generatoron a computeris a seriesof numberswith
a uniform probability, which is initialized by a special number called the random seed. The
seedmay take any integer value. Two inversion processestarted with distinct seedsgenerate
di erent models. Howeer, if the problem is su cien tly constrained,the algorithm corverges
towardsthe samezoneof the parameterspace.For lessconstrainedparameters,the investigated
zonesmay be quite di erent. An interest of launching seeral inversion processegor the same
caseis to test the robustnessof the ne result. All sets of models generatedby separated
processean be mergedto construct a morere ned approximation of the mist function.

The ensernble of models obtained from the neighbourhood algorithm has not the same
statistical properties as the posterior probability density. Moreover, the statistical properties
of the resulting ensemble strongly depend upon the tuning parameters. If lots of iterations
are performed, the number of models near the best model is greater than for an inversion
with lessiterations. By the meansof a resamplingof the parameter spaceand approximating
the posterior probability density with the mist function, Sanbridge (1999b) calculated the
Bayesianintegrals on an ensenble of modelshaving the statistical properties correspnding to
the posterior probability density. In our work, the algorithm we tested did not work properly,
probably due to internal bugs. By the lack of time, we did not investigate more this approach
but this secondstageof the inversionis certainly valuableto measurethe resolution and trade-
0 in a quartitativ e way.

2.4 Conditional parameter spaces

In its original form, the neighbourhood algorithm handlesa parameter spacewith orthogonal
boundaries. All parametershave a uniform probability within prior xed limits. They are set
at the beginning of the processwith constart values. If the limit of one parameter depends
upon the value of another parameter, it is necessaryto implemen a variable transformation.
For instance if parameter p; belongsto [l;;u,] wherel, and u; are constart numbers, and
p2 < p1, the prior interval of parameterp; is [lo; uz] (if up < pg) or [lo; pu] (if uz > po), |2
beinglessthan ;. The variable transformationis p, = I, + p3( py |2) wherepd is a random
parameterbetween0 and 1 that replacesp, in the neighbourhood model. The random variable
p. is the product of two random variables with uniform probabilities. The probability of p,
cannot be calculated analytically in an easyway, but it is certainly not uniform anymore. In
chapter 4, for complex ground structures there are numerousconditions of this type, and the
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Figure 2.3: Comparison of the distributions generated by variable transformation and by selection. 1000
models are generated. (a) Random distribution of two parameterswith no condition. (b) The condition p1 < pz
is applied with a variable transformation. (c) The condition is p1 < py is applied by rejecting bad model, but
conservingthe total number of models.

variable transformation is not an e cient and exible method. Figure 2.3(b) givesan example
of the e ects of the variable transformation on the model distribution acrossthe parameter
space( = 1). Comparedto a uniform distribution (gure 2.3(a)), the region at low p; is
over-sampledrelative to other parts of the space.

The original Fortran code and the stepsdescrited in Sanbridge (1999a) make a clear dis-
tinction betweenthe generationof the random models and the computation of the mist by
a user supplied function. Hence,at the userlevel, it is not possibleto indicate to the neigh-
bourhood algorithm that a particular model is not valid. Modi cations of the original code to
implement sud a feature cannot be donein an easy elegamn and compactway. Moreover, it is
written in Fortran77 with static vectors. Consequetly, the maximum number of modelsto be
generatedis hard coded. All thesereasonded usto re-write the algorithm in C++.

A list of parametersand their prior ranges,aswell asa list of conditionsof the typep; < p
de ne the conditional parameterspace.The initial rangesare evertually adjustedaccordingto
the list of conditions. For instance, if the input rangesare p; 2 [50;200]and p, 2 [10Q 250],
and if p, < py, the intervals are modied as p; 2 [100;200] and p, 2 [10Q 200]. These
conditions are called the low level conditions . The above condition is a forw ard condition
for parameterp,. Its courterpart, p; > p,, is a backward condition for parameterp;. Other
more complexconditions, evertually involving more than two parameters are called the high
level conditions . The rst type of conditions are cheded inside the neighbourhood algorithm
itself, whereasthe last onesare cheded by the usersuppliedfunction that calculatesthe mis t.
Contrary to the original Fortran implemenation, the mist function returns also a boolean
value that is falseif the mist cannot be calculated (limits of the forward algorithm, physical
or prior conditions not met whenthe nal model is constructed).

1. A setof ngg modelsis randomly generatedwith a uniform probability in the parameter

"For example, in the caseof a one-dimensionalground structure (seechapter 4), the V, prole may be xed
from the results of a refraction survey. The thicknessesof the Vs layers may be set independertly, eventually
with a more re ned discretization. The conditions induced by the natural limits of Poisson'sratio have to take
the depth parametersinto accourt, besidesusual V, and Vs.
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spaceand with the ful Iment of all conditions..

(a) random generationof parameterp; betweenl; and u;;
(b) ched of low level forward conditions attached to parameterp;, if okay, incremert i;
(c) while all parametersare not generatedgo bad to step (a);

(d) As a set of parameter satisfying the low level conditions has beengenerated,ched
the high level conditions and calculate the mis t;

(e) if the model is not acceptedby the high level conditions, restart from the rst
parameterin step (a);

(f) the modelis acceptedandit is addedat the end of the main model vector, a vector of
the referencego the n, best models, sorted by increasingmis ts is kept up-to-date;

(g) while ngg models are not generated,restart from the rst parameterin step (a) to
generatea new model;

2. Save the current n, best models

3. Generatean averageof Q—S new sampleswith a uniform probability in eat selectedcell
(n; cells).

(a) generateone model with a Markov chain equivalert to one descriked by Sanbridge
(1999a),exceptthat the "triangular" external shape (induced by the low level con-
ditions) of the parameter spaceis a supplememary limit of the Voronoi cells;

(b) if the high level conditions are satis ed, calculatethe mist and store the model in
the sameway asin step (1)(f);

(c) while ng new models are not generated,generatea new model in step (a);

4. While it o« iterations are not completed,go badk to (2).

If no conditions are set, this particular implemerta-

tion of the neighbourhood algorithm gives the samere- 1-0:
sults as the standard code and with approximately the 0_85
samecomputation time. Contrary to the standard code o ]
implemerted in the main dispersion curve inversiontool, %0-6?
this algorithm hasnot beentestedintensively. At leastin § |
one situation, when the theoretical or true model is very 5 0'4E
closeto a high level condition, the algorithm fails to gen- 0.2
eratenewmodels. This isillustrated in gure 2.4for a 2D 0o ]
e R L L I R

case. When generatinga new model in the cell with the
_ _ 00 02 04 06 08 10
grey outline, there are about one third of chanceto get Parameter 1

a good model. For higher dimensionsof the parameter Figure 2.4: High level condition inter-

space,the situation is even worse. This issuemight be sectionwith Voronoi cellsfor a 2D param-
eter space. The valid models are on the
right of the parameter spacelimit marked
by the thick black curve. The black dots

Y T i D S R 1
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solved by introducing more complexlow level conditions,
like: \if p; < p, andp, < ps, thenchek isp, < ps".

Sanbridge (2001) proposeda re ned de nition of the
mis t function to sampleall regionsof the parameterspace
where the models have an acceptablemist. Particularly, if the mist found is lessthan a
threshold, the model is stored with the mist equal to the threshold. Below this threshold,
the di erencesin the model responseare consideredas not signi cant. On this basis,a re ned
algorithm might be deweloped with the objective of nding the exact boundariesof all the
possibleacceptableregions. It may work by trying to nd bad tting modelsinsidethe good cells
convergingto are ned de nition of the boundariesregioncortaining the solutions. Recognizing
cortiguous cells with acceptablemist cannot be donein a perfect way for high dimensional
parameterspaces.But even with an approahed computation, it might be su cient to identify
the various modesof the current mist function. The searty may be oriented towards models
located betweenthose poles, for instanceby creating a new temporary and smaller parameter
spacefocusedon the badly sampledregion.

This improvemen of the standard neighbourhood algorithm is still under testing at the
time of writing this thesis. Consequetly, no examplecan be given to illustrate it.

2.5 Conclusions

The neighbourhood algorithm isa exible and powerful inversionmethod which requiresreliable
and fast forward calculation codes. Its ability to explore all the possiblesolutionsis a strong
advantage over linearized methods for complexand sometimespoorly constrainedgeoplysical
problems.



Chapter 3
Forw ard computation

This chapter aims at designingproper algorithms to calculate the dispersion, ellipticity, and
auto-correlation curvesin the framework of a pseudo-randominversion. A direct seart algo-
rithm, sud asthe neighbourhood algorithm descriked in section2.3, generatesa great number
of models for which the forward calculations are neededto obtain a mist value. The mist
value summarizesthe degreeof appropriatenessof a generatedmodel to explain the obsened
data. Becauseof the amourt of computations, the forward algorithm must be fast and secure.
Hence,much attention hasbeenpaid to the optimizations and to the quality of the nal results.
Also, the sensitivity of the three curvesto the model properties are studied in detail.

3.1 Disp ersion Curv es

This sectiondescrikesthe computation of the theoretical dispersion curve of a ground struc-
ture. This curve is calculated for models the properties of which vary with depth only (one-
dimensionalstructure). The pro les arediscretizedalongthe depth axisby a stack of layerswith
uniform properties as sketched by Fig. 3.1. The model parametersare the compressional-ave
velocity (V,), the shear-vave velocity (Vs), and the density () in the layers.

Though implemertations of the dispersioncurve for Love and Rayleigh wavesalready exist
for years (e.g. in Fortran, Herrmann 1994), the basic algorithms are studied in detail and
optimized to reducethe CPU time consumption. The proposedalgorithm is written in C++
and operates only on dynamic memory vectors without any disk access. This considerably
decreasethe total requiredtime. The speci cities of Love and Rayleigh wavesare investigated
separatelyfrom the points of view of the theory and the implemertation.

The computation of theoretical dispersion curvesis basedon the eigervalue problem de-
scribed by Thomson (1950) and Haslkell (1953), subsequetly modied by Knopo (1964),
Dunkin (1965) and Herrmann (1994). We use the Dunkin's notations, here after and inside
the sourcecode. The Herrmann's code usesalmost the samemethod as Dunkin. For Love
and Rayleigh waves, the equation of motion can be reducedto a systemof simple di erential
equationswith a derivative of the rst orderin z. In the caseof a stadk of horizonal layers,
this problem can be solved by the propagator-matrix method (Gilb ert and Badckus 1966, Aki

29
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Figure 3.1: Schematic one-dimensionalmodel de ned by a stadk of (n + 1) layers. z; are the depths of the top
of eadh layer.

and Richards 2002), descriked in the next section.

3.1.1 Propagator-matrix  metho d

For a stack of horizorntal and uniform layers, Gilbert and Badkus (1966) proposeda method to
solwe the di erential equationde ned by
d(2) _

o =A@ () (3.1)

wheref is a vector of n componerts and A is a n*n matrix. If A isindependen of z, which is
valid inside a layer, the solution is given by

f(z) = G(z; 20)f (20) (3.2)
where,

G(z;20) = ez WA (3.3)

Equation (3.3) can be dewlopedto nd the elemerts of matrix G using an eigervalue decom-
position of matrix A (Aki and Richards 2002). Becauseof the cortinuity of the displacemen
and the stressesat all interfacesbetweentwo layers, the following property is easily deduced
from equation (3.2):

f(z2) = G(z2;21)f (z1) = G(z2; 1) G(z1; Z0)f (20) (3.4)
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Hence,the vector f (z) at depth z, inside layer n is:
f(2) = G(z;2,)G(zn; 2z 1) :::G(z1; 20)f (20) (3.5)

The propagator matrices G are functions of the depth at the top and at the bottom of ead
layer, and of the matrix A which dependsupon layer properties. For Love and Rayleigh, vector
f (z) is called the motion-stressvector de ned in sections3.1.3and 3.1.4,respectively.

3.1.2 Displacemen ts, Stresses, and strains

This sectionrecalls the relationships betweenthe displacemen vector, the strain matrix and
the stressmatrix in the framework of the linear theory of elasticity. If the displacemets along
axis x; are in nitesimal (u; wherei may be 1, 2 or 3), the strain matrix is de ned by

" —1 @+@

i =5 @ @ (3.6)

The stressmatrix is linked to the strain matrix by the meansof the Hooke tensor ¢ (81
componerts reducingto 21 dueto symmetries). Usingthe summationrule for replicatedindices
inside a product, the stresstensor can be written as

X3
i = Gjkl' kl = Cij ki kI (3.7)
k=1 I=1

In the caseof isotropic medium, the 21 independert componerts reduceto the two Lame
moduli, and , and equation (3.7) is now

i = (k") G i+ o)« (3.8)

where j is the Kronedker symbol ( j = 1ifi=j orOifi 6 j).
In the absenceof volumetric forces, the equation of motion is a di erential equation of
displacemets and stresses.

hullhal P =il (3.9)

where is the density. For clarity, in the next sections,numerical indicesi are replacedby
indicesx, y, and z, and x; are replacedby x, y, and z.

3.1.3 Eigenvalue problem for Love waves
Theory

In a vertically heterogeneousisotropic and elastic medium occupying a half-space,equation
(3.9) for Love waveshas a solution of the form:
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u, = 0
u, = I(k;z;1 )l 'y (3.10)
u, = 0

Uy, Uy and u, are the radial, transversal and vertical componerts, respectively. V, = 'E (m/s)

is the Love velocity at angular frequency! (rad/s), k is the waverumber in the x direction.

I(k;z;!) is the real amplitude, phaseshifts are ignored as only one componert is considered.
The assaiated non-null stressesare (from equations(3.6) and (3.8)):

xy ik (z)letkx 'Y (3.11)
dl o
yz (Z)Eel(k '

(z) = (2)Vs(2)? is the shearrigidity. Let call (Z)g_lz by | . A motion-stressvector for Love

waves([I;1 17) is de ned sothat equation of motion (3.9) can be transformedinto

d | 0 1= (2) |
iz I ~ K@ !'2@® O | (3.12)

which hasthe form of equation (3.1). For surfacewaves,the boundary conditions require that:

[T O when z! 1 (3.13)

| =0 atthe freesurface z = z, (3.14)

Becauseequation (3.12) hasthe sameform asequation (3.1), the solution for the motion-stress
vectoris givenby equation(3.5). The condition onthe motion-stressat in nit y (equation(3.13))
cannot be introduced directly. It is transformedinto a radiation condition that no up-going
waves are found in the bottom half-space. For S plane waves, the amplitudes of downgoing
(Sn) and up going (S,) wavestraveling acrossan homogeneousalf spaceare function of the
motion-stressvector at the top of the half space(z = z,) (Aki and Richards 2002)

| |

S | '
v @) (3.15)
S, I (z,)
where,
!
1o L neeT ey (3.16)
; 20 n n€ " e nZ:Vszn
! 2
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Vs is the velocity of S waves(m/s). The subscriptn denotesparametersde ned for layer n as
represeted in gure 3.1. The motion-stressvector is propagatedto z, by the meansof equation

(3.5). Equation (3.15) becomes
! !

g: = T,'G(zn; 20 1):::G(21; 20) ||((Zzoo)) (3.18)
where,
I
G(zn; 2z 1) = cosi n 1(zn  Zn 1)] 1=( n 1 n gsiNh[ n 1(z0 20 1)]
ot n1ln 1Sinh[ n l(zn Zn l)] COSH n 1(Zn Zn l)]
(3.19)

Introducing the boundary conditions (equations(3.13) and (3.14)) into equation (3.18) gives

! !
1(z0)

S
C;] - Tann:::IGl 0 |
_ TR P 1(2o) (3.20)
l21 22

| —{z——

L (zo0)
which hasonly non trivial solutionswhen|,; vanishes. The problem of nding the dispersion
curvesfor Love wavesis hencereducedto a root seart along the slovnessor the velocity axis
for a given frequency For a given frequenq¥(2!—p, only a few discrete valuesare possiblefor
the velocity of the Love surfacewave (V. = ﬁ ), corresnding to the dispersion curves of

: |
various modes.

Eigenfunctions

The functions | and | de ned in equations(3.10) and (3.11) are the eigenfunctionsof Love

waves. For eat depth and frequency di erent valuesof eigenfunctionsexist correspnding to

all roots of 1,1(zg) (modes). The motion-stressvector at depth z; can be de ned numerically

by normalizing I(zy) to any arbitrary value. The computation of the eigenfunctionsat the next

layer interface is done by multiplying the motion-stressvector at depth z, by G,*. The same
task is repeated until reading the top of the half-space. Inside a particular layer, the values
of the eigenfunctionsare also calculatedfrom the de nition of G, (equation (3.18). Examples
of eigenfunctionvariation with depth can be found in Aki and Richards (2002). Among other

features,they showv that the penetration depth is frequencydependen. For high frequencies,
only the most super cial layersare a ected by displacemets and stresses.

Implemen tation

The problem is to nd the solutions of the equation I,;(V.) = 0. The computation of the
elemer |,,(zp) requiresthe multiplication of n 2x2 matrices, whereasthree of the four elemeits
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of the nal matrix L(zp) are useless.From the formulae of the product of two 2x2 matrices,
only I1(z;) and l,5(z;) are necessaryfor computing l»1(zp) which, in turn, requiresl,,(z;) and
I25(z2) (equation 3.21).

a(20) = T,'G,:::G; (3.21)
—

L (zo0) |

) | |21(Zn){z|22(zn) } " '

L(zn)=Tn *
|
T @) ()

| 21 2{Z 22\ £2 }

L(z2) I

121(z1)  122(z1)
{z

L(z1)

To calculate L(z,) = T,1, the factors e ? are dropped from elemetts |,1(z,) and l,2(z,)
(equation (3.16) becausewe are looking for the roots of 1,1(V.).

From equation(3.17), , isimaginary if k is lessthan the waverumber of S-waveskg, = \',—22
To avoid using complex number libraries, the sinh and cosh functions of equation (3.19) aslre
replacedby the correspnding trigonometric functions sin and cos For real valuesof ,, the
hyperbolic functions do not tolerate high argumens. They are preferably computedfrom their
analytical formulae:

eix e ix 1 e 2x
inh(ix) = = 22
sinh (ix) 5 e 5 (3.22)
L &tre 1+ e
cosh(ix) = > = >

Hence,an exponenial factor canbe droppedfrom the expressiorof G in equation(3.19) because
we are seekingfor roots. When factor €* is dropped, the computation of both hyperbolic

functions require the calculation of only oneexponertial function. As we are working in double
precision( oating points of 64 bits), all exponertial valuese ?* lessthan 10 ° are equialert

to zerosin equations(3.22). Thus, in equation 3.19, the hyperbolic functions reduceto % if

1
1z z0 1) > 39 In(10) 21:2 (3.23)

In ead layer, valuesof I,,(z) are scaledto t in the range between 1C° to 10°, to avoid
over ow when propagating acrossa stadk with marny layers.

In gure 3.2, the valuestaken by I,:(z) for all couples(! ; k) are shavn in the caseof a
two-layer model: 200m/s for Vs in the rst 25 m thick layer, and 1000m/s in the half-space.
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The rst 12 modes located at the root of the function are highlighted by bladk lines. The
negative valuesof the function are not represeted (white areas). The normal modesof Love
are obsened betweenthe minimum and the maximum Vs of the model. The fundamertal mode
is presen over the whole frequencyrange, whereasead higher mode has its own threshold
frequencyunder which it doesnot exist.

1000
800
600

400

Phase velocity (m/s)

200

0 10 20 30 40 50
Frequency (Hz)
0.000 0.004 0.016 0.064 0.256 2.048

Value of element I(21) at z=0

Figure 3.2: Valuestaken by l,1(zo) at di erent couples(frequency, velocity) for a two-layer model.

Finding the roots of l,1(zp) is not straightforward. This issueis treated in section 3.1.5
together with the overall performancesof this algorithm.

3.1.4 Eigenvalue problem for Rayleigh waves
Theory

In a vertically heterogeneousisotropic and elastic medium occupying a half-space,a P Sy
wave travelling along X axis generatesdisplacemets along X and Z axis of the form

ri(k;z;1)e® v
u = 0 (3.24)

ro(k;z;1)e® '

o=
x
1

c
N
1
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where uy, uy and u, are the radial, transversal and vertical componerts, respectively, r,; and
r, are the complexamplitudes (including phaseshifts betweencomponerts), ! is the angular
frequency and Vr = IE is the velocity of Rayleigh waves (m/s). A motion-stressvector for
Rayleigh wavesis de ned in a similar way asfor Love case(section 3.1.3).

0 1
rik;z;!)
. .I
r(k:z1) = rZ(k’Z")E (3.25)
ri(k;z;!)
r,(k;z;!)
where,
ri = i ( +2)%+krl (3.26)
r, = % Kr

r, is the amplitude of the vertical compressionstress ,, and r, is the amplitude of the ra-
dial shearstress ,,. From equation of motion (3.9), the solution must satisfy the following
di erential equation:

0 1 0 10 1
r 0 ik 0 1 r

i 1
dgr E - ) 0 = 0 E f2 E (3.27)
dz @y r, 0 12 0 ik r

4k2 (+ ) ik

where isthe density, and arelLame moduli. The z dependencieof , and have been
dropped for simplicity. For surfacewaves,the boundary conditions require that:

rs!' 0 and r! 0 when z! 1 (3.28)

r, =r, =0 atthe freesurface z = z, (3.29)

Similarly to Love case,the equation of motion is reducedto an equation of the sameform
as equation (3.1). The solution for the motion-stressvector is given by equation (3.5). The
constrairt on the motion-stressat in nit y is transformed into a radiation condition that no
up-going waves are found in the bottom half-space.For P Sy plane waves, the amplitudes
of downgoing (P,, and S, for P and S-waves, respectively) and up going (P, and S, for P and
S-waves, respectively) waves traveling acrossan homogeneousalf spaceare function of the
motion-stressvector at the top of the half space(z = z,) (Dunkin 1965, Aki and Richards
2002). The motion-stressvector is propagatedto z, by the meansof equation (3.5). The
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subscript n is addedto all parametersde ned for layer n.

0 1 0 1
Pn r(zn)

% Sh E =T, l% r2(zn) E =T, 1G(Zn;2n 1) 1 1:G(z1; 20)r (20) (3.30)
Pn ry(2n)
Sn r2(2n)

where, 0
2i khinK, aake  RaRy kK,

Y ke 20 kAR, kB, ﬁnﬁng
"2 AR 2@ 20 WkALR, ke AR, kR,
dake 20 GkALK, ik, ALK,

2 2
where,fiZ = 2k2 L, vz
pn sn

of Swaves(m/s), I, = k2+ K2, , = V2 isthe rigidity, and , is the density (t/m 3).

T (3.31)

Vpn is the velocity of P waves (m/s), k2 = 2k2 Vs, is the velocity

Merging boundary conditions with equation (3.30),

0 1
0

N

Sh

I
_|
-
®
>
®
=
~N
<

0 0
a1 Fi2 riz ra

_ % F21 To2 T23 T24 % r2(zs) g (3.32)
rax a2 I3z I3 0
Fa1 Ta2 Ta3 Tag 0

{z }

R(zo0)

This equationis always true whenthe sub-determinan (ri1r,,  riorp1) vanishes.Like in the
Love case,the problem of nding the dispersioncurvesis thus reducedto a root sear® along
the slowvnessor the velocity axis for a given frequency However asstated by Dunkin (1965),the
terms of the sub-determinan can becomevery large. Subtracting two large numbersresultsin
a lossof signi cant digits, which implies the useof very high precisioncomputations (e.g. 128
bit numbers or even more whereascomputersare classicallylimited to 32 or 64 bits). Hence,
Dunkin proposedan alternative way of propagating motion-stressvector by the meansof the
following theorem. If P = AQAW® - AlM DAM) then

' (. st u v
O N "

i
rah b 3.33

P k | m n op u v k | ( )

wherep ll( Jl = pkPji PupPjk is the secondorder sub-determinan of matrix P. The notation

Pj «i is alsousedin appendix A.
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In equation (3.33), the summation rulest apply for indices appearing two times like m and
n. In this case,the summed pairs of indices are to be only distinct pairs of distinct indices
(by corvertion, m< n,0< p,..., s< t,u< v). It follows from equation (3.33) that:

r11(zo)r22(z0)  ri2(z0)r21(z0) = r(zo)
12 ab e f
= t.1 o =0 (3.34
R (3.34)
: " o 12
With the condition on indices,the factor t, 1 b has6 componerts: 12,13, 14, 23,24 and
a

, ab o
34 (Dunkin 1965). On the other hand, g, d has6x6 componerts. Hence,like in the Love
c
case,for a given frequency(gﬁ), gnly a few discrete valuesare possiblefor the velocity of the
Rayleigh surfacewave (Vg = k('—.) ), correspnding to the dispersioncurvesof various modes.
' |

12
The dispersioncurve is found by seekingthe roots of r(zp) .

Eigenfunctions

As for the Love case,the functions r; to r, de ned in equation (3.25) are the eigenfunctions
for Rayleigh waves. From equation (3.32), it is obvious that

ri(zo) _  rio(zo)

ro(z0)  raa(zo) (3.35)

The ratio of eigenfunctionsr, and r, is hence xed to a constart that depends upon the
values of the elemens of matrix R(zp), itself, a function of the mode and the frequency for
which the Rayleigh velocity has been calculated. The motion-stressvector at depth z, can
be de ned numerically, normalizing either r, or r, to any arbitrary value. The computation
of the eigenfunctionsat any arbitrary depth is donein the sameway as for the Love case.
The elemens of G are not given here, but it can calculatedby an eigervalue decomposition of
matrix A (equations(3.27) and (3.1)).

The eigenfunctionsat the surfaceare useful for computing the ellipticity of Rayleigh waves
(section 3.2). It will be shavn how to calculate % without the complete knowledgeof the
elemerts of matrix R(zp).

Implemen tation

The detailed expressionsof the determinarts of R(z) are given in appendix A. The six-
componert vector R(z, ») is obtained by combining the matrix G, ; and the vector R(z, 1)

1The summation of indices take place thg one or more indices appear two times inside a product. For

instance, the formula xkiy; is in fact equalto 20 XkiVil

2In the pair (m; n) m is always di erent from n, and pairs (m; n) and (n; m) are strictly equivalert
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in the sameway as equations(A.12) for G, and T, 1. The computation is donefor ead layer
for bottom to top up to the rst oneat the free surface. As T1214 and Tq203 (@ppendix A) are
equal (from equation (3.31)), it is obvious that Ri503(zn 1) = Ri1214(Zn 1). From bottom to
top, the two componerts are always equal (equation (3.30)) and we can reducethe number of
componerts to v erather than six. Also, Ri214(zn 1) like T1,14 is the only imaginary componert
and this feature is presened acrossthe layered medium. Thus, the 6 componerts of t, ! reduce
to 5 and the matrix g, to 5x5 componerns.

To speed up the computation, we slightly modi ed the Dunkin's original formulation to
reducethe total number of operations, preferring subtractions, additions and multiplications
to divisions. The sinh and cosh functions are calculated in the sameway as for Love case,
including the real and imaginary cases(equation (3.22), section3.1.3). A frequencyfactor of
I 2 (equation (A.12), appendix A) hasbeenintroducedin Ry,1» to avoid unscaledvector at low
frequencies.For ead layer, valuesof sub-determinarts are scaledto t in the range between

10 to 1C° to avoid over ow when propagating acrossa stack with many layers. Compared
to Herrmann's formulation (1994)in the sameconditions (not in its original Fortran code but
already translated in C++), this implemenation reducesby 25%the time consumption.

1000
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400

Phase velocity (m/s)

200

T T T T
0 10 20 30 40 50
Frequency (Hz)

0'000 0'004 0'016 0'064 0'256 1'024 4'096
Value of sub-$eterminant %(1212)at z&0

Figure 3.3: Valuestakenby Ri212(2p) at dierent couples(frequency velocity) for a two-layer model.

In gure 3.3, the valuestaken by Ri,15(Zp) for all couples(! ;k) are shown in the caseof
a two-layer model: 1350and 250 m/s for V, and Vs, respectively in the rst 25m thick layer,
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and 2000and 1000m/s in the half-space.

3.1.5 A quick root search

For a given! , the roots of either 1,1(zy) (Love) or R1212(20) (Rayleigh) are searted along the
velocity axis. The problemis not to nd someroots of the function but all roots in a correct
order to clearly idertify the modal curves. Inside the sourcecode, the seard is performedon
the slovnessaxis to reducethe number of time consumingdivisions and alsoto take advantage
of the better separationof modesat high frequencyin the slovnessdomain comparedto the
usual velocity domain ( gure 3.3). For the sake of clarity, the velocity is usedin this section.

Physical search interv al

Typical dispersion curves are shavn on gure 3.4 with their lower and higher velocity limits.
All real curves have a velocity lessthan or equal to the maximum S-wave velocity of the

R V m ] V m
1000 1000
] V m
800 800
z | ?
E 600 £ 600
2 1 2 i
Q [$) b
o o i
(] (]
> 1 > b
400 400
1 Vm 1 vm
200 200
R 4V m
T ‘ 1T \‘ T ‘ T T ‘ T ‘ T ‘ L ‘ T ‘ T \‘ T ‘
05 1 5 10 50 05 1 5 10 50
Frequency (Hz) Frequency (Hz)

Figure 3.4: Velocity limits of Love (a) and Rayleigh (b) dispersion curves. Fundamertal mode and the two
rst higher modes are represerted with plain, dashed, dotted lines respectively. The horizontal lines are the
physical velocity limits.

model (Vs.max). The minimum possiblevelocity is not the samefor Love and Rayleigh cases.
For Love waves, all modestend to a common velocity at very high frequencies,equal to the
minimum S-wave velocity of the model (Vs.min ). At high frequency deeplayers are ignored by
the surfacewavesbehaviour. For Rayleigh waves,all higher modestend to Vs.min and Vsmax at
high and low frequenciesrespectively. For the fundamertal mode, the minimum (V;.min ) and
maximum (V;.max ) Velocities at high and low frequenciesare slightly lessthan Vs.min and Vs:max ,
respectively. Vi.min and V,.max are equalto the Rayleigh velocity obsened for a homogeneous
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half-spacewith the velocity of the rst layer and the bottom half space,respectively. In this
latter case,equations(3.31) and (3.32) simplify to

S

1 1 1 1
2-)=4= (1 )1 =
vr2) v, ¢ vp2)( VSZ)

1
V2

S

( (3.36)

whereV; is the velocity of S-waves, V, is the velocity of P-waves,andV; is the unknown velocity
of Rayleigh waves. Equation (3.36) shaws that the velocity of Rayleigh wavesis constart for
all frequencies,and henceno dispersion takes place. V;max for Rayleigh dispersion curves
(fundamertal mode) is thus calculated by solving equation (3.36) with Vs and V, being the
slovnessesof the layer with the minimum Vs. A few Newton-Raphson(Presset al. 1992)
iterations are necessaryto obtain V.min and Vi.max -

Brac keting the root candidates

The roots are searted starting from the highest to the lowest frequency within the range
de ned by the user. The method is illustrated in gure 3.5. The grey curves correspnd to
the samedispersioncurvesasin gure 3.3. In this section,the Rayleigh caseis discussedput
the samemethod appliesto Love's caseaswell, by replacing V;.min bY Ves:min ,» @nd Ri1212(20) by
l,1(z0). f1 is the highest frequencyof the userrange and f, is the secondhighest frequency
The fundamenal and the rst two higher modesare represeted. The plus and minus signs
represen the polarity of function R1512(z9). The polarity below the fundamenal curve (initial

polarity) is computed for Vfl;:”gfg and at low frequency(;- Hz). The minimum limit is divided
by 1.05to be surethat the fundamertal mode is not missed. The polarity alternates when
crossinga modal curve.

The rst root with the minimum velocity, that correspndsto the fundamertal mode at
the highestfrequency(f ), is bracketed by increasingthe velocity from Vfl;:”g)ag with an adaptive
step until nding a sign change. It always exists as the fundamertal mode is presen for all
frequencieg(grey dots and black dots when a root is found). The seard step is calculated by
multiplying the lower limit of the currernt interval by a constart step ratio. Either for Love
and Rayleigh, half the di erence betweenVs.nin and Vi.min is taken as a referenceto adjust the

initial velocity step. Hence,the step ratio is de ned by

Vs;min Vr;min
2 Vs;min

(3.37)

This method is particularly justi ed in this casebecauséhe ratio of the minimum and maximum
velocities of the admissiblerangeis usually around 4 or 5. The stepratio is evertually reduced
and the precisionis increased,if mode jumping is detected (section 3.1.6). Once a root has
beenbracketed, its upper and lower boundsare re ned down to the current precisionusingthe
algorithm descriked in the next paragraph. The higher bound of the re ned interval is kept as
the calculated curve. The modal velocity is then computed for the next frequencysamplef .
The starting velocity for the newseardt is the velocity calculatedfor the precedingfrequency
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Figure 3.5: Method for bracketing roots.

sample,f 1 in this case(the higher bound is taken). The seart direction dependsupon the
polarity obsened at f, and at the starting velocity. If it is the sameasthe initial polarity, the
true dispersionis located at a higher velocity (asin gure 3.5) and the root is re ned after the
sametype of seart asin f;. In the other case,the dispersion has a non-monotonousshape,
characteristic of models with low velocity zones(section 3.1.6). No seart is made becausea
polarity changehasalready beenfound; the root is directly re ned. The sameprocesss applied
for all frequencysamplesuntil the lowest. A nal test descriked in section3.1.6is performed
on the obtained modal curve. Afterwards, the curve is de nitiv ely accepted.

For higher modes, the minimum of velocity rangesare reducedto the valuesof the re ned
higher bounds of the precedingmode. The initial polarity is inverted. The modal curve may
not be de ned for all frequencysamples.If so,the velocity seart stopsat Vsmax - If the polarity
at Vs.max IS the sameasthe initial polarity, no root existsand the computation of this mode is
stopped. The sametest asfor the fundamertal mode is performedbeforede nitiv ely accepting
the curve.

Re ning the brackets

Once bradketed, there are se\eral classicalways of re ning a root of a non-linear or non-
analytical function. Amongthem, the mostrobustis the bissection(Presset al. 1992). It always
gives the correct answer if the root is correctly bracketed and if the function is cortinuous.
Howewer, it is not the quickest way in most of the situations. Like Herrmann (1994), we
implemerted an algorithm that mixes the bissectionmethod and a Lagrange polynomial t.

The Lagrangepolynomial is bestconstructedusingthe iterativ e Neville's algorithm (Presset al.
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1992). Correctionshave beenbrought to Herrmann'salgorithm to acieve better performances.
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Figure 3.6: Method for re ning roots. (a) to (f) are successie stepsof re nement. The thick plain curve is
the unknown theoretical curve. The thin plain line is the polynomial t from already calculated samples(black
dots). The grey dot is the new root computed from polynomial t. The grey rectanglesshov the zoom area of
the next step.

Practically, from the two initial bracketing values(V; and V,), a third point V3 is calculated
by bissection.R; to Rz are the valuesof R1,15(zp) for V; to Vs, respectively. According to the
sign of R, either V; or V, is replacedby the value V3, swapping them ewertually afterwards to
keepV; < V,. It is the state descrited by gure 3.6(a), whereV; and V, are represeted by
black dots. A Lagrangepolynomial is constructed on those two samples(a line in this case),
shavn by the thin plain line. From the intersectionof the polynomial with axisy = 0, a new V3
is deduced.,it is shifted by atenth of \V, V; towardsthe limit with the highestR1,;, value,and
R3 is re-calculated. If Rj is located betweenR; and R, the function is bijective inside [V1; V5]
and henceinvertible betweenV, and V,. This is not the casein gure 3.6(b). Consequetly, the
algorithm returns to bissectionto generatea new sampleV; from the currert V; and V,. As in
the rst step,either V; or V; is replacedby the value V3 (new bradkets are shovn in gure 3.6(c)
by bladk dots). New samples(grey dots) are generatedfrom the polynomial t and integrated
into it. In gures 3.6(d) to 3.6(f), the degreeincreasesat eah step as new samplesare added.

To eciently calculate the root of a Lagrange polynomial P(V), the axis X and Y are
swapped during its construction. The coordinates of the samplesare swapped so that P{R)
ts (R1; V1), (R2; Vo), .... The current estimate for the root is V = PY0). If R; and R, dier
from a factor 10 or more, the Neville's algorithm may fail and it is better to return to the
bissectionuntil reducingthe ratio. To avoid a quick return to bissection,the newly generated
point hasto be on the side of the true root whereeither R, or R, is maximum. For doing so,
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the calculated value is consideredas the true root, and it is shifted by a tenth of the current

bradket interval towards the boundary having the highestvalue for the function. In most cases,
when the true function is locally weakly non-linear, the limit with the highest function value
is replaced by the new shifted estimate of the root at the next iteration, keepingthe order
of magnitude of R; and R, in the samerange. This is the minor modi cation we brought to

Herrmann's algorithm (1994), but it has a major in uence over the global performances,as
the full power of the polynomial t is used. The maximum degreeof the polynomial is set
to 19, becauseits coe cien ts are stored in a static vector of limited length for e ciency. In

a cortradictory way, nding the perfectroot 2 is a problem becausethe inferior and superior
bradckets are lost as no sign can indicate on which side of the true root a new sampleis. It

may ruin the root seart for the next modes. This caseis chedked, and the computation of
the function is redoneat a slightly distinct value (minus one tenth of the current bracketed
interval).

With this method, only 4 to 6 iterations are generally necessaryto obtain a 10 7 relative
precision. One iteration correspndsto one evaluation of the numerical function R1212(2g). In
the original code written by Herrmann (1994), the degreeof the polynomial never increasesover
2 or 3, quickly returning to bissection. More than 10 iterations are necessaryto adiewve the
sameprecision. Our code rarely returns to bissection,increasingthe degreeof the polynomial
at ead iteration. Togetherwith the removal of all le Input/Output, it hasbeenpossibleto
drop the time consumptionby a factor 5 to 6.

3.1.6 Mo de jumping control

During a direct seart inversion, the number of calculated dispersion curvesis so huge that it
is impossibleto manually cortrol the individual results of eacn model. That is the reasonwhy
an automatic quality cortrol hasbeendeweloped.

Figure 3.2 shavs that modal curves might be located very closeto ead other at certain
frequencies: at high frequencyfor Love case,or at osculation points for Rayleigh case(e.g.
Forbriger 2003a). At thesepoints, the distance betweentwo modesmight be smallerthan the
default step calculated above. During the seard, crossingtwo modesin one step resultsin a
constan polarity and hencemodesare sougt at a higher velocity, ignoring two modes. Another
kind of mode jumping may occur for models with low velocity zones(LVZ). For those models
only, the dispersioncurve may have a non-monotonousshape with a leastonemaximum ( gure
3.7. When moving from frequencyf, to f, in gure 3.5, the horizortal line may crossse\eral
modesonly if higher modeshave alsoa non-monotonousshape at the consideredfrequency

Two kinds of tests (detailed in the next two paragraphs)are performed during the com-
putations of dispersion curve to detect any mode jumping. In caseof error, the computation
is always restarted for the current modal curve to the highest frequency of the user range.
Mearnwhile, the seard step and the relative precision are both divided by a factor 10. At

3In the computer sensethe perfect root is obtained when the valuesof the function are lessthen the internal
precision.
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this stage, optimization is not of concernand the step is chosensmall enoughto avoid mode
jumping rather than decreasingslonly until nding the maximum neededsize. Four restarts
are allowed before stating that the dispersion cannot be calculated for the given model. The
default precisionand stepratio are resetafter eat acceptanceof a modal curve.

Non-monotonous shape

If no LVZ is detectedin the model, any extrema of the dispersion curve is rejected and com-
putation is restarted. On the other hand, if a LVZ takes place in the model (gure 3.7),
the dispersion curve may shov one or more ex-

12007 trema. The validity of the precedingsampleis
1000—f chedked by searting a hypothetical additional
- 1 mode at a lower velocity (in the reversedirection
¥ 800 0 1000 o -
£ 1 of——l of the initial seart with the samestep). If any
% 600 = additional mode is found, it provesthat mode
2 400 8- jumping occurredand computation is restarted.
] iV . .
200 12 > For those models with LVZ, the computation
1 of dispersion curves may fail for all step sizes,
‘ ‘ T T ‘ L ‘ T H‘\H‘ ‘ T T T . . . _
L 5 4 6 810 20 40 SN if the number of admitted restarts werein
Frequency (Hz) nite. Hence,somelVZs are tolerated in this

. . . _ implemertation but not all of them. For some
Figure 3.7: Dispersioncurve of a model with a LVZ. o
of them, the correctdetermination of the modal
curve may require a denserfrequencysampling
(userinput). In this latter case,a more re ned technique should try to calculate the root at

an intermediate frequency

End-p oint check

For the fundamertal mode, the velocity hasto be lower than Vs.max , evenfor Love waves. When
it is equal,it generallyresultsfrom a mode jumping taking placeat a higher frequency For the
higher modes, the Vs.max Valueis obtained when reating the frequencythreshold belowv which
the mode doesnot exist. For all modes,the last point (at the lowest frequency)is chedked by
searting a hypothetical additional mode at a lower velocity (in the reversedirection of the
initial seart with the samestep). If any root is encourtered betweenthe higher bound of the
precedingmode and the lower bound of the last sampleof the current mode, it meansthat
at least one mode is missing. Unlike Herrmann's code, the root seart and root re nement
are always preservingthe upper and lower limits of the roots. In this way, there is absolutely
no risk to confusethe seard result with the previously calculated modes. This chedk assumes
that the distance between modesis changing along the frequencyaxis. When there are two
osculation points with one located at the lowest frequency of the user range, this algorithm
may howewer fail to detect any mode jumping. For the Rayleigh fundamertal mode, there is
absolutely not risk of such phenomenajf the userfrequencyrangeextendsto a su ciently low
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frequency for instance,below the threshold frequencyof the rst higher mode.

3.1.7 Mist

The mist is avaluethat represets the distancebetweena calculated dispersioncurve and an

experimertal curve. If the data curve is a ected by an uncertainty estimate,the mist is given
by:

U

XF X i X i 2

mistit =t (o Xa)®

2
i=1 i

(3.38)

where Xq;i is the velocity of data curve at frequencyf;, X is the velocity of calculated curve
at frequencyf;, ; isthe uncertainty of the frequencysamplesconsideredng is the number of
frequencysamplesconsidered.If no uncertainty is provided, ; is replacedby Xg in equation
(3.38).

When various modesare obsened and clearly identi ed, the inversionof all modesrequires
a multi-modal mist. The sum in equation (3.38) is extendedto all samplesavailable for
all modes. For higher modes, the curves may be de ned over a restricted frequency range.
Hence,it is not always possibleto calculatea theoretical dispersioncurve for someexperimertal
samples. If the calculated one-dimensionalmodel is closeto the real one, the valid rangesof
higher modes are similar and the number of experimertal samplesis equal to the number of
calculated samples.To force both curvesto be de ned in the samefrequencyrange,the mis t
is multiplied by a factor equalto

misf it = misf it (1+ Nexperimental ncalculated) (3-39)

Nexperimental D€ING the nUMber of available samplesfor ead curve (Nexperimental Ncalculated)-

3.1.8 Sensitivit y of the disp ersion against layer parameters

Four parameterscharacterize eat layer: the thickness,V,, Vs and the densily ( ). Vs is the
most in uent parameter (e.g. Xia et al. 2003). It varies from O in uids to 3500 m/s in
earth super cial crust (Reynolds1997). V, doesnot in uence Love-dispersion curvesand has
sometimesa non-negligiblein uence on Rayleigh-dispersion curve (seebelow). The natural
valuesare between100to 7000m/s (Reynolds 1997). Vs and V, are linked by Poisson'sratio
de ned by

2V2 Vp2

=_—_> P 3.40

207 V) (8:40)
Poisson'sratio is always betweenO and 0.5 (vanishing Vs). Common geologicmaterials have a
Poisson'sratio around 0.25. It may be greater for unconsolidatedor loosesedimets, reading
0.49in soft clays. 0.05can be measuredfor Very hard rocks (Reynolds1997). The density ( )

has almost no e ect on the dispersionwithin the usual geologicvaluesfrom 1 to 3 t/m 3.
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The e ects of theseparameterson the dispersioncurve are detailed in the next sectionsfor
a two-layer, a three-layer and n-layer case. The naming corvertion is the sameasin gure 3.1.

Tw o-layer model

Figures 3.8 and 3.9 shawv the in uence of Vg in the caseof a xed V, pro le and of a constart

Poisson'sratio, respectively. Love and Rayleigh dispersion curves (V,(f)) are plotted with

plain and dotted lines, respectively. The modelsand their correspnding dispersioncurvesare

represeted by distinct grey levels. In gure 3.8, only Vg is changing from 100to 1900 m/s.

Poisson'sratio variesaswell becauseV,y is held constart (written on the right). In gure 3.9,

only the variations of Vo are represeted but V, is alsochanging for all modelsto keepa con-
stant Poisson'sratio being 0, 0.25and 0.45in gure (a) to (c), respectively. Love and Rayleigh

curves are monotonously decreasingwith at least one in exion point. The rst derivative of

Love curveshas always one minimum. For Rayleigh curves,two minima and a maximum may

existin the rst derivative, especially for moderateto high Poisson'sratios. Vs of the rst layer

changeshe limit of the curvesat high frequency The limit at low frequencyis not in uenced by

the properties of the super cial layer. The lower is Poisson'sratio and the higheris Vg, bigger
is the di erence betweenLove and Rayleigh dispersioncurvesat high frequency in accordance
with equation (3.36) for a half-space.
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Figure 3.8: Inuence of V5o with a constart V, pro le. Rayleigh and Love fundamertal modesare represered
by plain and dotted lines, respectively. The valueson the right are the Poisson'sratios corresponding to Rayleigh
curves. Vgo varies from 100to 1900m/s. Vpo is 2687m/s. Vs; is 2000m/s. Poisson'sratio is 0.25 below 50 m.
The density is 2 t/m 2 at all depths.

In the Rayleigh case the in uence of V,q is chedkedin gure 3.10for two distinct Vs values
(200 and 1000 m/s). In both cases,Poisson'sratio varies from 0 (dark grey) to 0.45 (light
grey). V, pro les are shavn in the small gure on the left. For case(a), it varies between280
and 660m/s, and between1400and 3300m/s for case(b). V,, hasapparerily animpact onthe
dispersioncurve when Poisson'sratio is lessthan a threshold (around 0.27for case(a) and 0.37
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Figure 3.9: Inuence of
V5o with a constart Pois-
son's ratio: (a) =0, (b)
=0.25, and (c) =0.45.
Rayleigh and Love funda-
mental modes are repre-
serted by plain and dotted
lines, respectively. Vo varies
from 100to 1900m/s. Vs is
2000 m/s. Poisson'sratio is
0.25 below 50 m. The den-
sity is 2 t/m 2 at all depths.
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Figure 3.10:

Inuence of Vyo on the Rayleigh dispersion curve for two cases: (a) Vs0=200 m/s, and (b)

Vs0=1000 m/s. Poisson'sratio variesfrom O (dark) to 0.45(light). Hence,V,o variesfrom 283to 663 m/s (case
(), and from 1414to 3316m/s (case(b)). Vs1 is 2000m/s. Poisson'sratio is 0.25below 50 m. The density is

2 t/m 3 at all depths.
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Figure 3.11: Inuence of z;. Rayleigh and Love fundamertal modesare represeried by plain and dotted lines,
respectively. Vso is 200m/s. Vs; is 2000m/s. Poisson'sratio is 0.25at all depths. The density is 2 t/m 2 at all

depths.
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for case(b)) which dependsupon Vs. Above this threshold, V, loosesits in uence. For case
(a), only three curvesare well individualized, thosecorresmpndingto V, lessthan 400m/s. This
conditional dependencyexplainsthat, in most cases,only a minimum of V, can be retrieved
from the inversion of dispersioncurves(section4.2).
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Figure 3.12: Inuence of z; for Vs prole. Rayleigh and Love fundamertal modes are represerted by plain
and dotted lines, respectively. Vso is 200 m/s. Vs is 2000m/s. Poisson'sratio is (a) 0.00 and (b) 0.25 above
50 m and below 75 m. The density is 2 t/m 2 at all depths. The results for a Poisson'sratio of 0.45 are quite
similar to those of 0.25 (not shown).

In gure 3.11,the in uence of the thicknessof the rst layer is tested. Vs and V, pro les
are both modi ed by this parameter. Love and Rayleigh dispersion curves are translated in
the sameway when the depth is reduced. As V, or Poisson'sratio only changesthe shape of
Rayleigh curves, it is likely that the e ects of the thicknessare mainly dueto the modi cation
of Vs pro le rather than V, prole. This is tested hereafterwith gures 3.12and 3.13.

In gure 3.12,V, pro le is held constart wherez; of Vs pro le variesfrom 50to 75m. The
sametranslation asin the generalcaseis obsened. For low Poisson'sratios, the velocity at
1.25Hz is not a ected by the changing depth. The third of the wavelength, a commonrule of
the thumb in surfacewave analysisto map frequencyscalesto depth scales(Tokimatsu 1995),
is about 95 m at 1.25Hz.

In gure 3.13, Vs prole is held constart. Rayleigh dispersion curve is nearly not in u-
encedexceptfor low Poisson'sratio. For someother caseswith higher Poisson'sratios (not
showvn here), the only a ected part of the dispersionis the curvature closeto the maximum
Rayleigh velocity. Uncoupling depth limits of Vs and V, is one of the perspectives o ered by
the conditional neighbourhood algorithm (section 2.4).

The density of the rst layer hasa low in uence on the dispersion curves (either Love or
Rayleigh) as shavn by gure 3.14. The density is changedfrom 1 to 3 t/m 2 with Vs being
200 and 1000m/s, case(a) and (b), respectively. The e ects clearly depend upon Vgg. Vg1 IS
the samefor both caseshencethe velocity cortrast is alsomodi ed between(a) and (b). The
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Figure 3.13: Inuence of z; for V, prole. Rayleigh and Love fundamertal modes are represered by plain
and dotted lines, respectively. Vso is 200 m/s. Vs is 2000m/s. Poisson'sratio is (a) 0.00 and (b) 0.25 above
25 m and below 50 m. The density is 2 t/m 2 at all depths. The results for a Poisson'sratio of 0.45 are quite
similar to those of 0.25 (not shown).

e ect of the density is only visible for case(b). In case(a), the density hasalmost no in uence
exceptaround 1 Hz. Only the shape is modi ed, not the low and high frequencylimits. The
considerednterval (from 1to 3t/m 3) is probably largerthan usual prior uncertainty on density.
Hence,this parameteris generally xed to a constart valueduring inversionsof dispersioncurve
(section4.2).

The samesensitivity analysisis carried out for the parametersof the bottom half-space.
The in uence of Vs, is estimatedin gure 3.15.V, prole is held constart. Vs; and Poisson's
ratio in the bottom half spacevary from 300to 2000m/s, and from 0.5to O, respectively. It
acts exactly like Vo replacing high by low frequenciesand vice-versa. The di erence between
Love and Rayleigh curvesat low frequencyincreasedike Vg1, and it is maximum for Poisson's
ratio equalto 0. Above 2 Hz, no e ect can be obsened. Poisson'sratio has a little e ect on
the shape of the dispersion betweenthe low and high frequencylimits. The magnitude of the
e ect is much smallerthan the e ect of super cial Poisson'sratio.

To corroborate this obsenation, the e ect of V; aloneis measuredin gure 3.16. Vs is
xed to a constart value equalto 500 m/s and 2000m/s, for cases(a) and (b), respectively.
In a similar way as for Vy, all curvesappearto be mergedtogether for all V,; greaterthan a
particular threshold (around 4000m/s for case(b)).

Finally, the in uence of the density is shovn in gure 3.17. Two casesare chosenwith Vg;
xed to 500 and 2000m/s, noted by (a) and (b), respectively. The density variesfrom 1 to
3t/m 3. Comparing gures 3.14and 3.17,the densitiesof the rst layer and of the half-spacedo
not a ect the dispersionin the sameway. The last onereducesthe apparert velocity whenthe
density decreasesLike the density of the super cial layer, the interval of variation is probably
larger than the prior uncertainties. Hence,the e ects of are generallynegligible.
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Figure 3.14: Inuence of ¢ for two cases: (a) V50=200 m/s, and (b) Vs,=1000 m/s. Rayleigh and Love

fundamertal modesare represeried by plain and dotted lines, respectively. ¢ varies from 1to 3 t/m 3. Vg is
2000m/s. Poisson'sratio is 0.25at all depths.
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Figure 3.15: Inuence of Vs1 with a constart V, pro le. Rayleigh and Love fundamertal modesare represered
by plain and dotted lines, respectively. The valueson the left are the Poisson'sratios corresponding to Rayleigh
curves. Vs; varies from 300to 2000 m/s. Vs is 200 m/s. Poisson'sratio is 0.25 above 50 m. The density is
2 t/m 3 at all depths.



3.1. DISPERSION CURVES 53

2000
1600 (b) 0 5000
| 0 7 il il il il ‘ il
g 1200 7w
> | 40
‘© i ]
3 800 60—
2 ]
1 (a)
400
T ‘ T T T ‘ T 17T ‘ TTT ‘ TTT ‘ ‘ T T ‘ T 17T ‘ TTT ‘ TTT ‘ ‘ T T T ‘ T
0.2 0.4 0.60.81 2 4 6 810 20 40

Frequency (Hz)

Figure 3.16: Inuence of V,; on the Rayleigh dispersion curve for two cases: (a) Vs1=500 m/s, and (b)
Vs1=2000 m/s. Poisson'sratio variesfrom 0 (dark) to 0.45(light). Vg0 is 200m/s. Poisson'sratio is 0.25above
50 m. The density is 2 t/m 2 at all depths.
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Figure 3.17: Inuence of ; for two cases: (a) Vs1=500 m/s, and (b) Vs1=2000 m/s. Rayleigh and Love

fundamertal modesare represeried by plain and dotted lines, respectively. 1 varies from 1to 3 t/m 3. Vg is
200 m/s. Poisson'sratio is 0.25at all depths.
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Three-la yer model

With this geometry the properties of the rst and the last layer (half-space) have the same
e ect as for the two-layer case. The in uence of the intermediate layer characteristics (Vs1,
Vo1, and ) is investigated here. First, a large variation rangeis tested for Vs;, between 100
to 2500m/s (gure 3.18). This variation inducesse\eral typesof models: a low velocity zone
(Vs1 < Vg0 = 200m/s), a normal increaseof the velocity (Vso < Vs1 < Vs2), and a High Velocity
Zone (Vs1 > Vsp = 2000m/s). Vo is xed to 500m/s. Vs, is setto 2000m/s. V, pro les are
calculatedwith a Poisson'sratio of 0.25.
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Figure 3.18: Inuence of V51 with a constart Poisson'sratio. Rayleigh and Love fundamertal modesare rep-
reserted by plain and dotted lines, respectively. Vs; variesfrom 100to 2500m/s. V50=500 m/s. V52=2000 m/s.
Poisson'sratio is 0.25and density is 2t/m 2 at all depths. (b) Two-layer model (Vs pro le) and the corresponding
dispersion curve.

1. Low velocity zone
At high frequency Love and Rayleigh waveshave approximately the samevelocity, which
is equalto the minimum V4 of the model (Vs; in this case).Love curvesare monotonously
decreasing.On the cortrary, Rayleigh curvespresen a small minimum. At low frequency
the e ects of the low velocity zonedisappear.

2. Normal increaseof the velocity
The generalshape of the dispersion curvesis very comparablewith the onesfor a two-
layer model ( gure 3.9(b), dispersioncurvesfor the model with V=500 m/s). The only
di erence is the higher velocity between6 and 30 Hz which follows the velocity increase
of the secondlayer Vs;.

3. High velocity zone
At high frequency the Rayleigh curvesare similar to the curvesthat are obtained with
a two-layer model with a cortrast at 10 m ( gure 3.19). At low frequency the Rayleigh



3.1. DISPERSION CURVES

55

curves tend to Vi.max like the other classesof models. For Love, the algorithm ends
with an error message.Exceptionally for a fundamertal mode, the curve doesnot exist
at all frequencies(available above 10 Hz, or for wavelengthslessthan 200 m). At low
frequency the rst layer (10 m thick) is not "seen" by the propagating waves with a

wavelengthgreaterthan 200m. The model is equivalert to a high velocity layer overlying
a half spacewhere no real solution exists for the Love surfacewaves (Aki and Richards
2002,equation 7.6 calculatedwith complexnumbers).
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Figure 3.19: The light grey modelin gure 3.18
is the sameasin this gure between0 and 50 m.
(@) Vs prole. (b) The calculated dispersion for
the two-layer model. The dispersion curves are
also similar at high frequency

The in uence of Vp; in the intermediate layer is
tested with the samemodel asin gure 3.10. The
sedimen layer is split in two in the sameway asin
gure 3.18(10 and 40 m). Vj; in the intermediate
layer of 40 m is changed, keeping other parame-
ters constart. The results are shavn in gure 3.20
with two casesfor V; between O and 50 m: (a)
Vso = V51=200 m/s, and (b) V5o = V51=1000 m/s.
Figures 3.20 and 3.10 are quite similar, proving
that intermediate valuesV,; alsoin uence moder-
ately the dispersion curve. At high frequency in
gure 3.20(b), all curvestend to sameRayleigh ve-
locity. On the cortrary, in gure 3.10(b), for low
Vpo Values,a signi cant in uence is obsened above

10 Hz. This di erence is ertirely dueto the velocity valuesbetween0 and 10 m, which cortrol
the Rayleigh velocity at very high frequency
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Figure 3.20: Inuence of V1 on the Rayleigh dispersion curve for two cases:(a) Vso = Vs1=200 m/s, and (b)
Vso = Vs1=1000 m/s. Poisson'sratio variesfrom 0 (dark) to 0.45(light). Vs2=2000 m/s. Poisson'sratio is 0.25
in rst and bottom half-space. The density is 2 t/m 2 at all depths.
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3.1.9 Conclusion

An e cient and safealgorithm for calculating dispersion curves has beendewloped. On cur-
rently available personalcomputers(e.g. with a processorAthlon 2.2 GHz), the time neededto
calculate one sampleis about 5 microseconddor a two-layer model. If the dispersioncurve of
the fundamertal mode is sampledwith 30 points, more than 6500models can be calculatedin
only onesecond.It hasbeenimplemerted in a commandline program (os_forward) andin an
inversiontool (os_na). This algorithm is also exploited to calculate other spectral properties
of the ground model like the ellipticity and the auto-correlation, detailed in the next sections.

3.2 Ellipticit y

The H/V Method is a commontool usedfor site-e ect investigations (Nogoshi and Igarashi
1970,Nakamura 1989,Bard 1998). The horizortal (H) and vertical (V) componerts are simul-
taneously recordedat one single point. The ratio of H over V generally exhibits a peak, that
correspnds more or lessto the fundamental frequencyof the site (fo = ¥, Bonnefg/ 2004).
Howewer, the ambient wave eld is composedof unknown parts of body and surfacewaves. In
the rst case,the ratio is mainly in uenced by Sy resonancein the super cial layers. On
the other hand, if Rayleigh surfacewaves predominate, the theoretical ellipticity dictates the
obsened curves (Nogoshiand Igarashi 1970, Feah et al. 2001, Fah et al. 2003, Scherbaum et
al. 2003). Real data peaksusually t the frequencyof the theoretical curves but the ampli-
tude is rarely stable and reliable. Malischewskyand Sterbaum (2004) deweloped an analytical
formulation for two-layer models. They plotted the di erences of the peak frequencybetween
the two aforemerioned assumptionsversusthe magnitude of the velocity cortrast. At inter-
mediate and low cortrasts (below a factor of 4 betweenVyy and Vs;), a drastic gap may exist
betweenthe two interpretations. In this case,Bonnefo/ (2004) shaved that the obsened H/V

peak better ts with the extremaof the Sy transfer function.

H/V spectrum cortains valuable information about the underlying structure, especially a
particular relationship between Vs of the sedimens and their thickness(Boore and Toksez
1969, Stherbaumet al. 2003). Becausethe absoluteamplitude of the curve cannot be directly
comparedto the amplitude of the Sy transfer function or the ellipticity, only the frequency
of the peakis consideredhere. Somepreliminary tests shoved that using ellipticity amplitude
0 ers avery good constrairt evenon V, pro le. Howewer, wrong assumptionson the amplitude
also lead to completely biasedresults. Newertheless,Fah et al. (2003) invert the amplitude
betweenthe peakand the trough by meansof assumptionsabout the energypartition between
Love, Rayleigh and body waves. This alternative has beendiscardedduring our work. The
next sectionsfocusedon how to calculatethe ellipticity of Rayleigh wavesand how to calculate
the exact frequenciesof the peaks.
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3.2.1 Computation

The ellipticity is de ned by the ratio [;gg; whereri(zp) and ry(zp) are the factors appearing
in equation (3.24). This ratio can be calculated from the terms of matrix R(zy) as shavn by
equation (3.35). As detailed in section 3.1.4, the matrix R(z) is never completely calculated
during the dispersion curve computation and values of r1,(zg) and ry1(zp) are not available.

12

Howewer, it is possibleto calculate the ratio % from sub-determinarts r(zp) b as
a
showvn here below.
: : , 1
From the computation of the dispersion curve we know that r(zg) 1 o 0. The ap-

proximation comesfrom the fact that the dispersion curve is solved numerically with a nite
precision. Here, the problem is assumedto be perfectly solved, and the approximation is
dropped in the following equations. For simplicity, the z, dependencyis also dropped

il = T12021

r L2 rqqf Il (3.41)
1 3 111 23 131 21 .
12

=
|

rof rar
1 4 121 23 131 22

. . 12 . :
It is usefulto mertion that r 14 is imaginary as demonstratedby equation (3.35). We

multiplied by i asa real value is internally computed. The solution of the systemof equations
(3.41)is

i 12
r1(zo) - r12(2o) — 14 (3.42)
r2(2o) r11(2o) 1 2 .
r
13

Thus, for elastic wavesin a layered model, this ratio is an imaginary number either positive
(prograde) or negative (retrograde). Theseterms comefrom the analogybetweena rolling ball
and the particle motion

For a half space,using equation (3.31), the classicalformula is obtained (T okimatsu 1995):

(2) _ Ko Zaf) 2k 0T (V=W

ra(z0)  ha(ln 2k2 I|n ' (V,=\L)2 (3.43)

It is always a negative imaginary number and ry(zy) and r,(zy) are out of phaseby 90 with
ead other. The particle motion at the surfaceis then always retrograde elliptical for a half
space.In general,only the real absoluteamplitude of the ellipticit y is shovn on a log-log plot.

Equation (3.42) provesthat the ellipticity can be calculated at a very low cost once the
dispersion has been correctly computed. Howeer, the results are stable and reliable only if
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the dispersion problem (equation (3.34)) is su cien tly solved. Taking into accoun the error,
equation (3.42) transformsinto

i 12
rl(ZO) = 14 +e rl3(ZO) (3 44)
"o(2) r 12 r11(zo)r
13 w03

where e is the remainder of equation (3.34). Its magnitude is not constart becausethe itera-
tions of the root seard algorithm are stopped when the Rayleigh slovness(or the velocity) is
estimatedwith a relative precisionof 10 7. No test are performedon the absolutevalue of the
remainder. Calculating the error on the ellipticity value is newver done becausethe total error
dependsupon particular terms of matrix R(zp), not fully computed here. In most casesgexpe-
rience has proved that the problem is su cien tly solved with a 10 ’ relative precisionon the
dispersioncurve. An exceptionto this rule is shavn in the next sectionfor a three-layer model
where a 10 *° relative precisionis necessary Sucd computations are possiblewith numbers
having more than 50 signi cant digits handled by the ARPREC library (Bailey 2004).

In cortrast to section3.1.7,the mist computation is presened after the sensitivity study
becausea better understanding of the particular shape of the ellipticity curve is necessarto
de ne the mis t.

3.2.2 Sensitivit y

For a two-layer model the in uence of Vg is shavn in gures 3.21and 3.22, for a constart V,
prole and a xed Poisson'sratio, respectively. Hence,the ellipticity of a two-layer model has
in most casesa root (at 1 Hz for the darkest curve) and a singular point (the maximum at
0.5 Hz for the darkest curve) but it is not always true as demonstratedin gure 3.22. Even
for a two-layer model, a secondarymaximum may be encourered (at 0.8and 2.2 Hz in gure
3.22). There is always onefrequencyband (narrow or large) wherethe ellipticity is maximum.
When the number of layers increases,se\eral singularities are sometimesobsened but it
is not a constart feature. Figure 3.23 illustrates the variation of the ellipticity with Vs of
the intermediate layer for a three-layer case. At high frequencyfor the darkest model (with
Vs1 being 100 m/s), usual precisionis not su cient to achieve a correct computation of the
ellipticity curve. An experimertal algorithm with high precisionarithmetics hasbeendeweloped
for this particular case.A striking feature of the ellipticity curve of the two darkest models of
gure 3.23,both having a thin hard ground at the surface,is that the ellipticity ratio at high
frequencydoes not tend to the value predicted by equation (3.43). All other models follow
equation (3.43) at high frequency Physically, this could be explainedby the trapping of energy
within the intermediate layer which alters the classicaldevelopmernt of surfacewaves.
Sderbaumet al. (2003) showved for a two-layer model that an inversion of the frequencyof
the main peak can bring valuable information. The generalisationto n layersis not straight-
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Figure 3.21: Inuence of V5o with a constart V, prole. Vs variesfrom 100to 1900m/s. Vpo is 2687 m/s
hence,Poisson'sratio variesfrom 0.499(dark) to O (light) likein gure 3.8. Vs; is 2000m/s. Poisson'sratio is
0.25below 50 m. The density is 2 t/m 2 at all depths.
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Figure 3.22: Inuence of V5o with a constant Poisson'sratio. Vo variesfrom 100to 1900m/s. Vs; is 2000m/s.
Poisson'sratio is 0.25and the density is 2 t/m 2 at all depths.
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forward becausethe shape of the ellipticity curve appearsto be very sensitive to the model
parameters. In this cortext, the determination of the frequencyof the main peakis not uni-
vocal in all caseseven for the simplest models. Also, the inversion of the absolute amplitude
of the experimertal H/V curveswith the Rayleigh fundamertal ellipticity in the generalcase
of n layers may not be reliable. If experimertal H/V curvesmay presen seeral peaks,there
is no strong evidenceof a relationship betweenthose real peaksand the various peaksof the
fundamertal Rayleigh curve. The ellipticity of the higher modesor body wave resonancemay
be alsosuspected. Without a clear agreemen on the physical model to explain multiple peaks
of the experimertal H/V curves,a consenrative option, detailed in the next section, is kept to
avoid the introduction biasedprior information.
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Figure 3.23: Inuence of V51 with a constart Poisson'sratio. Vs variesfrom 100to 2500m/s. V50=200 m/s.
Vs2=2000 m/s. Poisson'sratio is 0.25and the density is 2 t/m 2 at all depths.

3.2.3 Mist

The mist of the ellipticity is de ned by

misf it = (f O)experimental (f 0)calculated (3.45)

(d O) experimental

where f is the frequency of the peak, and (d o)experimentar 1S the standard deviation of the
experimertal frequency peak. In caseof a joint inversion of the dispersion curve and the
frequencypeak of the ellipticity, the two mis ts are conbined with the following relation

(miSf it)global = (1 )(miSf it)dispersion + (miSf it)ellipticity (3-46)

From the implemertation point of view, (f o) caiculated IS NOt computedeasily For ead sample
point of the ellipticity curve, it is necessaryo calculatethe correspnding samplepoints of the



3.3. SPATIAL AUTO-CORRELATION 61

dispersion curve. Hence,for a rst estimate of (fo)caicuated, ONly the user frequency samples
are used. Calculating the mis t with this rst approad leadsto a mist which highly depends
upon the arbitrary userfrequencysamples.A more robust algorithm must be able to calculate
the exact frequencyof the peak (down to a reasonablgorecision,10 3 Hz by default). The peak
samplingis re ned with a three-point sdheme. Becauseof the local cortinuity of the ellipticity

curve, if ell; is the maximum of the sampledcurve, the true maximum is always located between
ell; ; andellj+; . A newsampleis addedbetweenell; ; and ell;, or ell; and ellj+; . The largest
interval is always chosenin order to balancethe samplingrate around the true peak. For eat

supplemetary sample,the dispersion curve is re-calculated. In the new subsetmade of the

four samples,the absolute maximum is sear@ied and the sameprocessingis performed until

bradketing the true peakwith a su cient precision.

Additionally, when various peaksare presen in the user frequencyrange, the samepro-
cessingmust be conductedfor ead relative maximum. A set of seweral (fo)caiculated:i IS thus
obtained. Due to the lack of generalagreemeh on the signi cation of multiple experimen-
tal H/V peaks,only the main one is kept for inversion. The mist value is calculated with
(f o) catculated:i Which givesthe lowest mis t.

3.3 Spatial auto-correlation

The spatial auto-correlationmethod was rst proposedby Aki (1957)for horizortally propagat-
ing waves. The caseof pure Rayleigh wavesmeasuredon the vertical componerts is considered
in this work.

3.3.1 Computation

Assuming a unique phasevelocity per frequencyand the stationarity of the noise wave eld
both in time and space,Aki (1957) demonstratedthat the correlation of the signalsrecorded
at two stations separatedby distancer can be written :

rt)y=J3 — 3.47
(r;!')=Jo o) (3.47)
where, ~ is the azimuthal averageof the correlation ratio (r;!) = -, o(! ) is the phase
velocity at angular frequency! , and J, is the Besselfunction of the order n.

Z

(r;') = % . Vo(t)v; (t)dt

wherevy(t) and v, (t) are the recordedsignalsat two stations separatedby distancer.
Equation (3.47) is valid for the vertical componert. Correspnding and more complex
formulae exist for the horizontal componerts of the surfacewaves(Metaxian 1994,Bettig et al.
2001).
An exampleof atypical station layout is givenin gure 3.24(a)for an array with an aperture
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of about 100 m. The irregular shape is generally induced by natural obstaclesor arti cial
structures (trees, streets, buildings, ...). The end points of the vectors joining all pairs of
stations are plotted on gure 3.24(b). For sud animperfectarray, it is not possibleto calculate
an azimuthal averagefor one single distance. The solution proposedby Bettig et al. (2001)is
to group pairs of stations alongrings of nite thicknessesasthe pairs of grey circlesdrawn in
gure 3.24(b). Equation (3.47) can be modi ed to allow the calculation of averageratios over
aring betweenr; andr,.
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Figure 3.24: (a) Map of sensorlocationsfor atypical 20
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Equation (3.48) has the samegeneralshape as equation (3.47) and is strictly equalif r,
tendsto r,. In the following, we will referto equation (3.47) for the sake of simplicity.

3.3.2 Mist

The mist is evaluated for all data samples.lIt is de ned in the sameway asfor the dispersion
curve inversion (equation (3.38) and Wathelet et al. 2004), taking into accoun the standard
deviation obsened for eat spatial auto-correlation sample:

Vv

u .
o 1 Xr RFi . )2
misf it = t F‘nRin M (3.49)
k=1 1'FK = =1 ij

where, g; is the SPAC ratio of data curvesat frequencyf; and for ring i which is de ned by
all inter-station distancesbetweenr;; and ri, ¢ is the SPAC ratio of calculated curves at
frequencyf; andfor ring i, j isthe obsenred variancefor the sampleat frequencyf; and for
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ring i, ngr is the number of rings considered,and ng; is the number of frequencysamplesfor
rng i.

As for dispersion curves, the implemerted algorithm can calculate a mist for a set of
modal curves by including the cortributions of all modesin the sum of equation (3.49). The
technique descrited in section3.1.7is alsousedfor higher modeswith a limited valid frequency
band. Options exist to restrict the mist computation to the rst decreasingpart of the auto-
correlation curve (argumert of Bessel'dunction lessthan 3.2) andto avoid the part of the curves
closeto 1 (argumert of Bessel'sfunction greaterthan 0.4). In this case,ewen the fundamertal
mode may have a restricted valid frequencyinterval for which the mist is correctedin the
sameway asfor higher modes. Howewer, experiencehasproved that thoseoptions are generally
uselessand that the whole frequencyrange can be usedfor inversion (section 5.2).

3.3.3 Sensitivit y
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Figure 3.25: Inuence of V5o with a constant Poisson'sratio. Vo variesfrom 100to 1900m/s. Vg; is 2000m/s.
Poisson'sratio is 0.25 and the density is 2 t/m 2 at all depths.

The caseof gure 3.9(b) is taken as an example. Thus, Poisson'sratio is 0.25, and Vg
variesfrom 100to 1900m/s. The auto-correlation curvesare calculatedfor all rings descrited
in gure 3.24(b) with equation 3.48. The results are plotted in gure 3.25. All curves are
between-0.4 and 1, corverging towards 1 for low frequencies,and oscillating around zero for
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high frequencies. The shapes obsened for the dispersion curves are transposedto the auto-
correlation, for instance, the strong variation in the slope at 0.9 Hz for the darkest curve. A
translation towards higher velocities on the dispersion curve appears as a translation of the
rst minimum of the auto-correlation curve towards a higher frequency

3.4 Conclusion

A robust and fast dispersion curve algorithm for one-dimensionalmodels is deweloped and
tested in represetativ e cases.Howewer, the sensitivity study carried in this chapter is far from
being exhaustive. The objective is limited to the determination of the signi cant parameters
which might beinverted. Traditionally, Vs is the only oneparameterincludedin the inversionof
dispersion curves. Newertheless,this work demonstratesthat, in somecases)\, hasalsoa non
negligible in uence. The ellipticity and the auto-correlation curves can be easily computed as
well. For eat spectral property, a mist function is de ned. Theseforward algorithms can be
usedin a non-linear and stochastic inversionsud asthe neighbourhood algorithm (chapter 4).



Chapter 4
Parameterization of a ground model

The inversion principles are presened in chapter 2 as well as the particular method usedin
this work: the neighbourhood algorithm. Chapter 3 details the computation of dispersion,
ellipticit y and auto-correlation curvesfor a one-dimensionalground model, aswell asthe mis t
calculation in eat case. To perform an inversion of experimertal data, it is also necessaryto
identify the physical unknowns of the problem. For most of the stochastic inversion methods,
models are characterizedby a set of uniform random deviatesbetweenO and 1. The objective
of this chapter is to investigatethe possiblealternativesfor transforming thoserandom vectors
into physical parametersof a one-dimensionalground model. In a rst approad, it can be
seenas a scaling of the interval [0; 1] to the prior uncertainty of a particular layer property.
But things becomemore complicated when some combinations of parameter values are not
physically acceptable. This problem is analysedin the rst section. The e ciency of the
inversion algorithm decreaseswith the number of parameters. When the number of layers
increases,low velocity zonesare likely to be presen in the generatedproles. The second
section reviews the problems encourtered with models with a great number of layers. The
third sectionproposesvarious solutionsto handle velocity variations with a reducednumber of
parameters.

4.1 Theoretical model used in parameterization tests

During this work, numerousground models and parameterizationshave beentried while de-
veloping the inversion software. In the next sections,the in uence of the parameterizationis
illustrated through inversion exampleswith a common referenceground model. This latter
oneis made of three layers including the bottom half space. The properties of eat layer are
speci ed in table 4.1. The velocity pro les, the dispersionand the ellipticity curvesare shovn
in gure 4.1.

The fundamertal Rayleigh curve of gure 4.1(b) is consideredin the next section as the
data curve that would have beenobtained by any of the experimertal methods presetted in
chapter 1. Various inversion shemesare tried to retrieve the original velocity proles. The
other curvesare usedin chapter 5 where more specializedinversionsare reviewed.

65
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Contrary to synthetic curvesthat can be calculated on any arbitrary frequencyinterval,
the experimenrtal curvesare generallyavailable on a restricted frequencyband. Becausethere
is a closerelation between the depth and the signal frequency content (section 3.1.8), the
quality of inversion strongly depends upon the frequency range of the measureddispersion
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Figure 4.1: Theoretical casefor testing parameterizations. (a) V, prole. (b) Dispersion curve for the
fundamental (solid) and the rst higher mode (dots) of Love (grey) and Rayleigh (black). (c) Vs prole. (d)
Rayleigh fundamertal ellipticit y.

Layer Thickness Vs Vo Poisson'sratio Density
Sedimerts 1 10m 200m/s  375ml/s 0.3 2t/m3
Sedimelts 2 90m 1000m/s 1750m/s 0.25 2t/m3

Basemen { 3000m/s 4500m/s 0.10 2t/m3

Table 4.1: Properties of the referencemodel.

curve. Stherbaumet al. (2003) shaved that the energyon the vertical componert drastically
decreases$n the vicinity and below the fundamertal frequencyof the soil structure. Rayleigh
dispersioncurvesare currerntly best measuredon the vertical componerts, perpendicularto the
freesurface. It impliesthat the uncertainties on the apparert velocity determination below the
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threshold frequencyare usually signi cant and limit the range of available dispersion curves.
From the shape of the ellipticity ( gure 4.1(d)), this e ect is assumedto occur belov 5.5 Hz.

Actually, the ellipticity curve hastwo maxima at 2.5 and 5.5 Hz. Hence,the energyon the
vertical componert might be still su cient belov 5.5 Hz. In the absenceof ambient vibration

simulations for this case,we cannot predict the value of the peak frequencyof the measured
H/V and thus the magnitude of the high-pass Iter e ect. Hereafter,two casesare considered:
a broad band (0.2 to 20 Hz) and a narrow band (5.5 to 15 Hz) dispersioncurve. The second
oneis probably closerto frequencyrange obtained for real experimert with Rayleigh waves.

4.2 Thic kness, V,, and Vs

For ead layer of the ground model, the consideredparametersare: the thickness(h), and the
velocities V, and Vs. The densily is generallynot inverted hereasits in uence on the dispersion
curve is usually small comparedto the other parameters'one (section 3.1.8).

In this section,we make useof the standard neighbourhood algorithm deweloped in Fortran
by Sanbridge (1999a). For eat generatedparameterset, a mist value must be calculated by
the forward algorithm, ewven if the parametersdo not ful | with physical and prior conditions.
With the original inversion code, it is not possibleto reject a particular model. The wrong
model might be discardedby returning an arbitrary high mist to the neighbourhood algorithm.
Howewer, we prove hereafterthat it is an ine cient method, especially when the number of
parametersis increasing. Assuminga parameterset P, : :: P,, when there is only one physical
condition of the type P; < P;, there is one chanceover two to get a good model. From the
combinatorial probabilities, if the number of conditionsincreasesup to m, the chanceof getting
onegood model reducesto Zim Typically, for a three-layer model, the number of parametersis
8 and the number of physical conditions of the type P; < P; is also8. Hence,the probability of
generatingone good model is 1/256. Usual valuesfor the tuning parametersof the neighbour-
hood algorithm are it ,ox =100, ng=100, and n,=100 to generate10000models. In most cases,
three iterations are thus necessaryto get at least one good model. At the next iteration, 100
new models are generatedin the 100 best cells. Hence,one new model is added closeto the
good model and 99 other modelsare still selectedin the wrong regionsof the parameterspace.
Finally, very few good models are obtained and the good regionsof the parameter spaceare
poorly investigated. All the wrong models are stored by the neighbourhood algorithm and all
of them are included in the computation of the Voronoi geometry As the number of modelsis
increasing,the rate of the model generationis always decreasingsloved down by uselessvrong
models. At the end of our work, we deweloped a modi ed neighbourhood algorithm that takes
into accourt the model rejectionin an e cien t way (sections2.4). Howeer, this study is based
on the standard algorithm which requiresan appropriate parametertransformation in order to
avoid generatingwrong ground models. This part is coveredin this section.

The thicknessesf the layers may take whatewer positive value. Thus, the transformation
is just a linear scaling from [0; 1] to [hmin ; hmax]- The layer thicknessesmay also be set by
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specifying the absolute depth of the bottom of ead layer (z). In this case,the user must
avoid overlapping of the depth rangeswhich may induce negative thickness. As for thickness,
it alsoreducesto a linear scalingfrom [0; 1] tO [Zmin ; Zmax ]- Mixtures of both typesof position
parametersare not possiblein the deweloped software.

V, and Vs are linked by Poisson'sratio. For geologicalmaterials, Poisson'sratio ispailways
between0 and 0.5. Hence,V, and Vs must satisfy the following inequalities0 < Vs < -2V, =
0:70A,. There aretwo alternativesto parameterizeV, and Vs satisfying the conditions, which

both make useof ratio Vep( ) = :/’—p

1. Calculating Vs from the rst parameterwith a scalingfrom [0; 1] t0 [Vs:min ; Vsmax]. The
%econobarameteristhe ratio Vsp scaledto [Vsp:min ; Vsp;max] Where0 < Vgpmin and Vspmax <

_2
>

2. Calculating V, from the rst parameterwith a scalingfrom [0; 1] t0 [Vp:min ; Vpmax]- The
secondparameteris the ratio Vs, with the samelimits asin the last case.

The rst option is more intuitiv e becauseVs has the greatestin uence on the dispersion
curve. Howeer, the generatedV, valuesrangefrom 2V to 1 or to any value above common
real obsenations. Secondly the prior probabilities of Vs and Vs, are uniform on the user
speci ed range. Considering parametersindependertly (Vs or Vy,), it meansthat the whole
parameterspaceis equally investigated. From the parameterizationpoint of view, every model
has an equal chanceto be taken at random. Howeer, consideringV,, it is the ratio of two
uniform random variablesVs and Vs, and its density of probability is far from being constart
over the user speci ed range. Thus, someV, values have more chancesto be generatedby
the neighbourhood algorithm than others. BecauseV, is not always well constrainedby the
dispersioncurve, the parameterizationmay arti cially orientate the inversiontowards particular
modelsrather than exploring the whole parameter space. From the user point of view, the V,
pro le may appear better constrainedthan it is really.

On the other hand, taking the secondoption, V, pro les are uniformly investigated. Because
Vs is relatively well constrainedby the dispersioncurve, the in uence of the parameterization
is only sensitive at the beginning of the process. Once the area of solution is delineated, the
bias introduced by the non-uniform probability becomesnegligible. Also, the rangeforpvp is
xed by the userand no abnormalV, value is generated. Vs valuesare always lessthan 72Vp.
For models with a reasonablenumber of layers (up to three or four), this option is probably
the bestoneand it hasbeenchosenin the software implemertation testedin the next sections.

For a stadk of layers,acommoncondition is the absencef low velocity zonesor amonotonous
increasingpro le. This aspect is studied in section4.3 for a stadk of N layers. The increasing
of velocity with depth may be parameterizedby setting the velocity incremen at ead interface
as parameters(P), and (V)i = (Vp)i 1+ P. Vs is calculated as above with the valuesof V.
Low velocity zonesmay still appear on Vs pro les. When necessarythey may be avoided by
multiplying the nal mist by a penalty factor, function of the magnitude of the low velocity
zone. This technique works only for a reducednumber of layers (up to three or four), for reasons
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probably similar to the onesdetailed in the introduction of this section. We useit in the simple
parameterizationshereafter.

4.2.1 Two layers

The shape of the fundamertal Rayleigh dispersioncurve in gure 4.1(b) hasa complexshape.
Howewer, we rst testif it is possibleto invert it with a simple model madeof onelayer overlying
a half space. The curve is resampledwith 50 points regularly distributed on a log frequency
scale. The utilized parametersare detailed in table 4.2. The neighbourhood algorithm is

Layer Thickness Vo Vs/ Vp Density
Sedimes 1to 200m 200to 2,000m/s 0.01to 0.707 2t/m3
Half-space { +10 to 3,000m/s 0.01to 0.707 2t/m3

Table 4.2: Parameterized model for two-layer inversions. The "+" sign stands for incremenrtal velocity: the
parameter is the velocity gap betweenthe rst and the secondlayer.
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Figure 4.2: Inversion of the full dispersion curve with a two-layer mode. (a) Resulting V, proles. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding
to models of gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.

tuned to be asexploratory as possible,generating100 models per iteration (ns) in the current
100bestcells(n,). Runsof 50iterations are started with v e distinct random seedgchapter 2)
to test the robustnessof the results. Theseparametersare usually adjusted by trial and error.
The dimensionof the parameter spaceis 5. Eacd individual processgeneratesan ensenble of
5100possiblesolutions ranked by their mist values. The results of the inversionare shavn in
gure 4.2in terms of velocity pro les. Only the modelswith a mist lessthan 0.1 are selected.
The shape of the dispersion curve at low frequency (gure 4.1) is obviously too complexto
be correctly inverted with a simple model made of two layers. A more complex structure has
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to be assumedin order to invert the dispersion curve between 0.2 and 20 Hz (section 4.2.2).
Howewer, the Vs prole belov 8 m is well retrieved. The shapes of the referenceand the
calculated dispersion curve at high frequency (above 5 Hz) are similar. The low frequency
part of the curve prevens the mist from being improved and it in uences the error on the
depth and on V,. In the next paragraph, better results can be achieved by consideringonly the
dispersioncurve at high frequency

The fundamertal Rayleigh dispersion curve between 5.5 and 15 Hz, resampledwith 30
points regularly distributed on a log frequencyscaleand descrited in section4.1 (gure 4.1)is
inverted in the sameconditions asabove. Figure 4.3 shavs the minimum mist ewlution with
the number of generatedmodels. The curve is newer regular as already noticed by Sanbridge
(1999a). But in general,the variations are progressiely damped if the number of generated
modelsis su cien t.

In gure 4.4,eat generatedmodel is represeied
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eters (z; and Vg), the results are appraximately the samefor all runs. For other parameters,
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ead additional run may brought somenew solutions, improving the global sampling of the
parameter space. Even with only v e parameters,the complexity of the parameter spaceis
sudh that an exhaustive samplingwould be prohibitiv e.

The results of the inversion are showvn in gure 4.5 in terms of velocity proles. Only
the models with a mist lessthan 0.1 are selected( 25000models). Retrieved V,, and Vs
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Figure 4.5: Inversionwith a two-layer model: velocity proles. (a) Resulting V, proles. (b) Resulting Vs
pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curves corresponding to models of
gures (a) and (b). The black dots are the theoretical dispersion curve usedasthe target curve during inversion.

pro les are visible in gures 4.5(a) and 4.5(b). The bladk lines are the theoretical velocity
pro les. The dispersion curve calculatedfor pro les of gures 4.5(a) and 4.5(b) are shawvn in
gure 4.5(c) wherethe bladk dots are the simulated experimertal curve de ned on a restricted
range (section 4.1). According to the level of con dence on the experimertal curve, darkest
models may be discarded. The lightest models (mist < 0.3) t nicely with the theoretical
model exceptfor V, within the basemen Vs is well retrieved for the rst 8 m whereasa wide
range of V,, valuesmay explain the obsened dispersion curve. Even for Vs, the uncertairnties
greatly increasefrom 8 m, below the depth of the velocity cortrast. Howewer, if the dispersion
is known with a very good con dence and a good precision, Vo can be correctly estimated
becauset is not possibleto nd any model with Vy,, > 500n=s and a mist belov 0.03.

A commonsolution to improve the precisionfor deeper structure is to enlargethe frequency
range of the dispersioncurve. For a two-layer parameterization, broader frequencyrangeslead
to badly resoled structures with a minimum acdhievable mist above 0.1 (gure 4.2). Hence,
it is not possibleto nd an equivalert two-layer model for the more complexsoil structure. In
a real situation, when a two-layer parameterization gives worse results than a more complex
parameterization, it is a pieceof evidencethat the structure is probably not simply made of
homogeneoussedimerts overlying a hard-rock basemeh In the next section, a three-layer
parameterizationis usedand the in uence of the frequencyrangeis cheded.
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4.2.2 Three layers

The fundamenal Rayleigh dispersion curve showvn in gure 4.1is inverted with a three-layer
model. Various types of dispersion curve sampling are reviewed in this section. Finally, the
e ect of the prior information on the depthsis chedked.

Broad band disp ersion curve

The dispersion curve is sampledwith 50 points regularly distributed on a log frequencyscale
and on a wide frequencyrangefrom 0.2 to 20 Hz. The parametersare of the sametype asfor
the precedingcasewith one supplememary layer. Table 4.3 givesthe list of parametersand
their prior intervals. The V, pro le isimposedto be monotonouslyincreasingby setting positive
velocity variations as parametersrather than the absolutevalue. Vs is kept monotonousby the
penalization technique (introdution of section4.2) on the low velocity zones.

Layer Thickness Vo Vsl Vp Density
Sedimets 1 1to 50m 200to 2,000m/s 0.01to 0.707 2t/m3
Sedimems 2 1to 200m +10 to 2,000m/s 0.01to 0.707 2t/m3

Half-space { +10 to 3,000m/s 0.01to 0.707 2t/m3

Table 4.3: Parameterized model for three-layer inversions. The "+" sign stands for incremenrtal velocity: the
parameter is the velocity gap betweenthe rst and the secondlayer.

Fiveindependen runs are started with ng (number of samplesper iteration) and n, (number
of cellsto resample)being 100. The number of iterations is setarbitrarily to 150. The ewlution
of the minimum mist with the number of generatedmodels (not showvn) nally provesthat
valuesfor the tuning parametersare necessaryand su cient. The total number of generated
model is hence75500,with a minimum mist around 0.02. The V,, and Vs pro les of models
(8900) for which the mist islessthan 0.1are plotted in gures 4.6(a) and 4.6(b), respectively.
The correspnding dispersion curvesare shavn in gure 4.6(c).

On the rst ten metres, the inverted pro les are very similar to those obtained with the
two-layer parameterization. The velocities of the basemen are also relatively well retrieved
(below 100m). The posterior uncertairties of the intermediate layer are higher than the one of
the rst layer, mainly becauseof the low sensitivity of the dispersioncurve to the intermediate
layers (section 3.1.8 on page54). Though Poisson'sratio is left totally free, the uncertairties
on V, and Vs of the intermediate layer are of the sameorder. The uncertainty on the depth
determinations are always high ewven for the rst interface at ten metres (errors up to nearly
409%'). A preciseinversion of the depthsis possiblebut requiresa very high precisionon the
dispersioncurve.

This caseis theoretical. During real experimerts, the dispersionis not de ned down to
0.2 Hz if the resonancdrequency(given by the main peak of the ellipticity or of the measured
H/V) is around 5.5Hz. The e ect of sud limitation is testedin the next section.

1The depth of the best models is around 10 m. Consideringa mist of 0.05 as acceptable,the depth may
varies between8 and 14 m, which makesan error between20 and 40%.
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Figure 4.6: Inversionwith a three-layer model over a broad frequency range. (a) Resulting V, proles. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curves corresponding
to models of gures (a) and (b). The black dots are the theoretical dispersion curve usedas the target curve
during inversion.

Narro w band disp ersion curv e

The dispersioncurve is resampledwith 30 points on a narrow frequencyrangefrom 5.5to 15Hz
asin section4.2.1. The parameterizationis exactly the sameasin the above section(table 4.3).
Ten independen runs are started with the samecharacteristicsas in the above section. The
number is increasedto improve the parameter-spacesampling.

The modelswith a mist lower than 0.1 ( 4800matches)are displayed in gure 4.7. The
minimum mist is around 0.02. The Vs pro le is correctly retrieved down to 8 or 10 m like in
the two layer casein section4.2.1. Below, a lot of models are virtually possible. With a very
high precisionon the dispersioncurve, Vs pro le seemdo be correctly retrieved down to 100m,
for instancethe white onein gure 4.7(b). Howewer, hereafter (narrow band dispersion curve
with prior information on V,, on page 77), we shaw that the parameter spaceinvestigation
is not sucient in this caseleading to optimistic conclusions. Below 100 m, all models are
possibleeven with a very low mist (the white onewith an interfaceat 170m).

Low frequency disp ersion curv e

From the above discussion.the low frequencypart of the dispersionis absolutely necessaryto
investigate deeplayers. In this paragraph, we shov an exampleof inversionwithout the high
frequency part, simulating an experimert with only large aperture arrays. The fundamernal
Rayleigh dispersioncurve in gure 4.1(b) is resampledwith 30 samplesfrom 0.2to 8 Hz.

The inversionis run with v e distinct processewith the parameterization detailed in ta-
ble 4.3. The retrieved velocity pro les areshovn in gures 4.8(a)and 4.8(b). The correspnding
dispersioncurvesare plotted in gure 4.8(c). Whereasthe depth and the velocities (V, and Vs)
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Figure 4.7: Inversionwith a three-layer model over a restricted frequencyrange. (a) Resulting V, pro les. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding
to models of gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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Figure 4.8: Inversion with a three-layer model over a low frequency range. (a) Resulting V, proles. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding
to models of gures (a) and (b). The black dots are the theoretical dispersion curve usedas the target curve
during inversion.
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of the basemen are obtained with approximately the sameprecisionasin gure 4.6, strong bias
is obsened for the properties of the rst layers. Contrary to all precedinginversion examples
of this chapter, the averageretrieved pro le is false. The averageVy found is 400 m/s while
the correct value is 200 m/s. Even more annoying, the models with Vg = 200 m/s have all
very bad mists. In the absenceof any constrairt on Vg, the neighbourhood algorithm and
the chosenparameterizatior? orientate the seart to an arbitrary and falsepro le.

Those results highlight the needfor a good de nition of the dispersion curve at high fre-
guency (from 8 or 10 Hz in this case). In many cases,the ambient noise techniques loose
reliability in the highestfrequencyrangedue to various factors (unknown sourcesdistribution
and sourcetype, higher modes, too large aperture for arrays,...). Active sourcesmethods, for
which a better cortrol on the sourceparametersis possible,are ableto provide complememary
information at sud frequencies.

Prior information on depth

If the depth of any particular velocity cortrast is known from other investigationslike areference
boreholeor a penetration test, it can be introduced in the parameterization. Sud a test is
performed on the samedispersioncurve asin gure 4.6 with the parametersde ned in table
4.4. The depth is supposedto be known with an error of 5 m.

Layer Depth Vo Vsl Vp Density
Sedimens 1 1to 90m  200to 2,000m/s 0.01to 0.707 2t/m3
Sedimems 2 95to 105m +10 to 2,000m/s 0.01to 0.707 2t/m3

Half-space { +10 to 3,000m/s 0.01to 0.707 2t/m3

Table 4.4: Parameterized model for three-layer inversionswith prior depth. The "+" sign stands for incre-
mental velocity: the parameter is the velocity gap betweenthe rst and the secondlayer.

Five runs are launched generatingthe modelsdisplayed in gure 4.9. The mist valuescan
be compareddirectly to the onesof gure 4.7 becausehe dispersionsamplesusedto calculate
them are exactly the same.Reducingthe depth prior interval hasobviously a positive in uence
in the inversion process. The main e ect is to reducethe uncertainty of the velocities of the
intermediate layer.

In gure 4.9, the improvemen of the posterior uncertainty may be due to the strong con-
straint on the large band dispersion curve. The sameparameterizationis also tested on the
dispersion curve with a narrow frequency band asin gure 4.7. The results are shovn in
gure 4.10. Forcing the depth of the basemen indisputably allows a better retrieval of the
velocity in the secondlayer belov 10 m. Howewer, the parameterizedmodel made of three
uniform layersimply that the velocity has a constart prole between10 and 100 m. Stating
that the velocity pro les are correctly measureddown to 100m is certainly false. The results
at 100 m are in uenced by the constrairts on V5 between 10 and 25 m. Inversionswith one

2For Vs, the prior density of probability is not uniform in this parameterization, asexplainedat the beginning
of section 4.2
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Figure 4.9: Inversionwith a three-layer model with prior depth. (a) Resulting V, proles. (b) Resulting Vs
pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curves corresponding to models of
gures (a) and (b). The black dots are the theoretical dispersion curve usedasthe target curve during inversion.
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Figure 4.10: Inversionwith a three-layer model at high frequencywith prior depth. (a) Resulting V, pro les.
(b) Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersioncurvescorresponding
to models of gures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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or more supplemetary degreesf freedommust be carried out to de ne the total penetration
depth of the method.

In conclusion,any prior information about the depths of the known velocity cortrasts help
the inversion of the dispersion curves even for incomplete ones. Like any other information
source,its reliability must be ensuredand the length of the xed depth interval set according
to the data sourcecon dence.

Prior information on V,

V, pro les may also be measuredby other meansnot related to surfacewave properties. Re-
fraction tests, boreholelogging, cross-hole,... may bring valuable information about V,. Like
the depth, the prior information about V, is introducedin the parameterizationitself. In the
above sections,the V, prole is left astotally freein a very large interval. Here, we x it
in a deterministic way, removing V, from the parameterlist. Table 4.5 details the remaining
parameters. The dimensionof the parameter spacereducesfrom 8 to 5.

Layer Thickness Vo Vsl Vp Density
Sedimetrs 1 1to 200m 375m/s 0.01to 0.707 2t/m3
Sedimems 2 1to 200m 1750m/s 0.01to 0.707 2t/m3

Half-space { 4500m/s 0.01to 0.707 2t/m3

Table 4.5: Parameterized model for three-layer inversionswith prior V,.

Using the standard implemenation of the neighbourhood algorithm, it is not possibleto
disconnectthe depthsof the Vs and V, pro les. Hence,arealV, pro le cannotbe xed without
forcing the Vs pro le to have interfacesat the samedepths. For this test, the depths of the V,
pro le areleft asfree parametersand they follow the depths of the Vs pro le. The conditional
neighbourhood algorithm (section 2.4) would allow totally independert pro les for Vs and V.
Consequetly, the V, pro le could be xed without a ecting directly the inversion of Vs.

The results are showvn in gures 4.11and 4.12for a dispersion curve de ned over a broad
and a narrow frequencyband, respectively (v e distinct inversion processesn eat case). The
minimum mis t is around 0.002for both cases.In gure 4.11,31000modelshave a mist lower
than 0.1 (23000in gure 4.12), the threshold usedto selectmodel.

Comparing gures 4.6 and 4.11, the uncertainty of V5 on the intermediate layer is greatly
reduced,shaving a direct e ect of the xing Vp. Howewer, xing V, hasalsoan e ect on the
depth error of the deepest cortrast. Other tests with wrong prior V,, valuesshow that the nal
Vs results are weakly a ected by over-estimatedV, pro les. In cortrast, any under-estimation
(gf_Vp completely ruins the inversion of V5 becausethe maximum of Vs is automatically setto
—2V,,. This is why V, valuescanbe xed only whenreliable data exist. Testswith and without
the prior information must be carried out. When there is no pre-existing data about V,, the
best option is to include it in the parameterizationlike in precedingsection,with a very large
prior interval.
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Figure 4.11: Inversion with a three-layer model with prior V,. (a) Resulting V,, proles. (b) Resulting Vs
pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curves corresponding to models of
gures (a) and (b). The black dots are the theoretical dispersion curve usedasthe target curve during inversion.
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Figure 4.12: Inversionwith athree-layer model at high frequencywith prior V,. (a) Resulting V, pro les. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding
to models of gures (a) and (b). The black dots are the theoretical dispersion curve usedas the target curve
during inversion.
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The parameterizationusedfor generating gure 4.12is a particular caseof the more general
parameterizationrelating to gure 4.7. Hence,if the investigation of the parameter spacewas
perfectfor gure 4.7,all modelsappearingin gure 4.12would be alsogeneratedoy the inversion
processillustrated in gure 4.7. Clearly, the introduction of reliable prior information about V,
alsomakesthe inversionmore e cien t leadingto a better parameterspaceinvestigation. From
gure 4.12,if the dispersioncurve is known with a su cient precision(acceptablemist at 0.2),
Vs can be determinedwith a precisionof 200m/s ( 20%) down to 20 or 30 m. Without the
V, information this uncertainty is greaterthan 200m/s (caseof gure 4.7).

4.3 Stack of N layers

In section 4.2, the soil structure is modeled with a few layers of varying thicknesses. Alter-
natively, the velocity variation may be discretizedby a great number of thin layers with xed
thicknesses. It is the usual technique for linearized inversion methods (Herrmann 1994). It
generallyimplies a greater number of parametersthan the approad descriled in section4.2.

In this section,we invert the samedispersioncurve asin section4.2. Howe\er, V, is supposed
to be known in a deterministic way and without biasto allow the comparisonof arbitrary and
increasingpro les. In section4.3.1, an additional inversion caseis proposedwith V, and Vs as
the variable parameters. The variation of velocity is represeted by a stadk of ten layers with
xed thicknesseg?, 3,5, 8, 12,17, 23, 30, 38,and 47 m) plus a half space.The density is xed
to 2 t/m 2 in all layers.

4.3.1 Arbitrary prole

The model is made of 11 layers with one parameter per layer (Vsp, the ratio of Vs over V).
Table 4.6 summarizesthe properties of ead layer.

Layer Depth Vo VsV Density
0 2m 375m/s 0.01to 0.707 2t/m3
1 5m 375m/s 0.01to 0.707 2t/m3
2 10m 375m/s 0.01to 0.707 2t/m3
3 18m 1750m/s 0.01to 0.707 2t/m3

4 30m 1750m/s 0.01to 0.707 2t/m3

5

6

7

8

47m 1750m/s 0.01to 0.707 2t/m3

70m 1750m/s 0.01to 0.707 2t/m3

100m 1750m/s 0.01to 0.707 2t/m3

138m 4500m/s 0.01to 0.707 2t/m3

9 185m 4500m/s 0.01to 0.707 2t/m3
Half-space  { 4500m/s 0.01to 0.707 2t/m3

Table 4.6: Parameterized model for N-layer inversions.

Poisson'sratios are totally independert and Vs pro les might be generatedwith evertually
various LVZs. The inversionis started with v e distinct random seeds. The number of new
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modelsper iteration is 100(ns) and the number of cellsresampledis 100(n,). 150iterations are
successiely performedto obtain a total of 75,500models. The resultsare shavn in gure 4.13.
The minimum mis t is around 0.005.
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Figure 4.13: Inversionwith a N-layer model accepting LVZ (Vs only). (a) Resulting Vs proles. The black
lines are the theoretical velocity pro les. (b) Dispersioncurvescorresponding to modelsof gure (a). The black
dots are the theoretical dispersion curve usedas the target curve during inversion.

The Vs proles in gure 4.13(a)can be directly comparedwith gure 4.11(b) alsoobtained
with a xed V, pro le and onthe samedispersioncurve. The presencef LVZs slightly increases
the non-uniguenessof the problem. The e ect of a very slov layer may be thwarted when
overlying a faster layer.

In gure 4.13,the xed V, prole preverts from generatinga number of additional models.
Another inversioncaseis then proposedwith varying V, and Vs pro les. The rangeof V, values
inside eadt layer is set to [200 6000]m/s. The inversionis started with 20 distinct random
seedgo obtain a total of 202,000models. The results are shavn in gure 4.14. The minimum
mist is around 0.012.90,000modelshave mist lessthan 0.1.

The Vs proles in gure 4.14(b) can be directly comparedwith gure 4.6(b) obtained on
the samedispersion curve. In this case,the presenceof LVZs drastically increasesthe non-
uniquenessof the problem. From gure 4.14, no information can be retrieved between10 m
and 185 m. By cortrast, gure 4.6 shaws for the samedispersion curve that interesting in-
formation can be extracted by assumingthat no LVZ are presen. Howewer, in gure 4.6, the
velaocities just belov 10 m and just above the cortrast around 100 m must be the same,which
is probably too restrictive. In the next sections,various approatesare proposedto allow ve-
locity variations inside layers and avoiding LVZs with the standard neighbourhood algorithm.
Howewer, a simpler solution canbe implemerted with the conditional neighbourhood algorithm.
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Figure 4.14: Inversion with a N-layer model accepting LVZ (V, and Vs). (a) Resulting V, proles. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding
to models of gure (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.

4.3.2 Vs inversion without LVZ

In common geologicalsituations, Vs increaseswith depth: rock weathering, sedimemn com-
paction,... (Bachrach et al. 2000, Stherbaum et al. 2003). Howewer, the velocity may
decreasewith depth in somecases:saturated layers, clays overlied by sandy formations, hard
ground above unconsolidatedsedimerts, lava ows,...From the above example(section4.3.1),
if the soil structure is made of thin intercalations of soft and rigid layers, the dispersion curve
inversioncannotresole the propertiesof ead individual layer. Consequetly, alimited number
of LVZs canbetolerated in the model whenthe geologicalstructure of the areajusti es it. Be-
tweentwo particular LVZs, the velocity must be constart or must increasewith depth. Taking
these conditions into account during inversion is capital but not straightforward. There are
numerousways of implemerting sud prior information, we deweloped someof them, described
in appendix B.

Theoretically, the parameterization must ensurethat any ground model included in the
parameter spacehas an equal chanceto be generatedby the neighbourhood algorithm. If this
is not veri ed, the inversionalgorithm itself introducesprior information, prefering particular
classesf modelsto others. For instance,in section4.3.1,all V, pro les have the samechance
to be generated but the Vs pro les are calculatedby the mutliplication of two random variables
and have not auniform probability ( gure B.1). The prior distributions of the proposedmethods
are detailed in appendix B.

The inversionof the broad band dispersioncurve is started with v e distinct random seeds,
using the scaleddiagonal parameterizationfor Vs proles and a xed V, prole (sectionB.8).
50 iterations are launched per inversion processgeneratinga total of 25500models. Among
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them, 14000have a mist lower than 0.1. The results are shovn in gure 4.15. In the same
conditions, the scaledinterpole method tested in gure B.8 producesonly 285 models with
mis t lower than 0.1. In this case,the choice of the method for generatingmodelshasa strong
in uence on the global e ciency of the inversionalgorithm.
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Figure 4.15: Inversionwith a N-layer model rejecting LVZ by the diagonal method. (a) Resulting Vs pro les.
The black lines are the theoretical velocity pro les. (b) Dispersion curvescorresponding to models of gure (a).
The black dots are the theoretical dispersion curve usedas the target curve during inversion.
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Figure 4.16: Comparison of a three-layer and N-layer inversions. The minimum and maximum Vs for models
with a mist lower than 0.02 are reported for ead inversion case: three-layer inversion (plain lines), N-layer
with LVZs (dotted lines), and N-layer without LVZs (dashedlines). Figure (b) is a zoom on the rst ten metre
for clarity.

In gure 4.16,the inversionwith a three-layer model and with a N-Layer model accepting
LVZs (gure 4.13)or rejecting LVZs (gure 4.15) are compared. The mist are calculated on
the samedata curvesin the three cases.Only the minimum and maximum Vs obsened at eat
depth for ead caseis reported in the gures. The inversionwhich acceptsLVZ always results
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with quite large uncertainties comparedto the inversionsassumingan increaseof the velocity
with depth. The three-layer inversion gives more information about the depth uncertainty,
comparedto other caseswhereasit under-estimatesthe uncertainty on the velocity, especially
below the velocity corntrasts (between10 and 70 m, and between100and 180 m) and nearthe
surface(between0 and 5 m).

In conclusion,inverting with a very simple model made of uniform layers doesnot provide
the complete uncertainty about the ground structure. In cortrast, the inversionwith a great
number of layers requiresthe introduction of relationships betweenthe velocities of adjacen
layers, to avoid generatinglot of low velocity zones.Thoserelationshipscan be translated into
parameterizationrules for a simple structure whereV, is constart or increasing.

4.4 Non-uniform layers

In the precedingsection,it hasbeenshown that simple modelswith homogeneousayersusually
under-estimatethe posterior uncertainty. A solution to this issueis proposedin this section
by the introduction of vertically heterogeneoudayers. A linear and a power law increaseof
the velocity with depth are consideredhere. The dispersion curve computation is designedfor
layers with homogeneougproperties. Consequetly, in both cases.the variation is discretized
by seeral sub-layers for which properties are managedby the characteristics of the main het-
erogeneoudayer.

4.4.1 Linear variation
The velocity (either V, or Vs) at depth z is given by

Vn VO

V=V +
i 0 . Z

(z 20) (4.1)

where z, is the top of the consideredlayer, V;, is the velocity at zp, z, is the bottom of the
consideredlayer, and V, is the velocity at z,. For dispersion curve computations, the func-
tion Vi(z) is discretizedinto a xed number of homogeneoussub-layers. Their number (n)
is generally kept as low as possible(between5 and 10) to avoid an increaseof the inversion
computation time. The thicknesse<f the sub-layers are all equal. This kind of pro le is not
implemerted in the inversion algorithm basedon the standard neighbourhood algorithm. For
historical reasonsit is only available for the conditional neighbourhood algorithm.

4.4.2 Power law variation

The velocity (either V, or Vs) at depth z is given by

Vi=VW(z+1) (2+1) +1) (4.2)
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wherez, is the top of the layer considered )\, is the velocity at zp, is the power-law exponert,
generallyvarying betweenO and 1. The substractionin equation 4.2 is necessaryif the power
law variation is usedfor deeplayers (zo > 0). Like the linear pro les, the function V;(z) is
divided into a xed number of homogeneousub-layers. Setting the exponert  asa parameter
is not a good choice, becausdt generatesmodelswith an uncortrolled maximum velocity. The
situation is even worseif seeral heterogeneous$ayersare usedin the samestructure. A better
solution is to set the top (Vp) and the bottom (V,) velocity astwo distinct parameters. For
the conditional neighbourhood algorithm, the simple condition V, < V, is introduced. For the
standard neighbourhood algorithm, V, and dV are the parameters,V, beingequalto V, + dV.
is calculated by solving the following equation:
Vi Vo

f(O)=@+1) @+D) =0 (4.3)

A few iterations with the bissectionmethod are generally necessary There is always only one
solution between0 and 1 becausef ( ) is monotonouslyincreasing. Other iterative methods
are not appropriate.

If the thicknessesf the sub-layers are constart, the power law variation is badly sampled.
Very high velocity jumps are obsened for the rst sub-layers. Thus, it is better to imposea
constart velocity jump from one sub-layer to the next one, equalto dTV The depth of the top
and of the bottom of ead sub-layer is then easily calculated from

.dv
2o, it (20t 1) 1::; 2z, (4.4)
Vo

Inside eath sub-layer, for the salke of simplicity, we setthe velocity of the sub-layer to the value
of the analytical power law function at the middle of the sub-layer. Hence,
Z 1t Z

Vi=Vp T+1 (zo+1) +1 ;i=1:::;n (4.5)

To summarize,from the thicknessof the layer and dV (or V,), it is possibleto de ne in
a unigue way the individual thicknessesof eat sub-layer and their velocities. An interme-
diate computation is necessaryto obtain the value of the exponert. The exponert  can be
recalculatedfrom the thicknessesand the velocities of the two rst sub-layers by solving the
equation
\Z V2

o )= @+l @D+ L@ = 1 (4.6)

a( ) Y21 isalsomonotonouslyincreasingand have only oneroot between0O and 1. It is
Vi

solved by bissection.

The parametersfor a layer with power law gradiert are V (either V, or V), dV ( or V,),
and the thicknessH (or z; and z,, the depth of the top and of the bottom of the layer). The
number of sub-layersis only a tuning parameter.
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Figure 4.17: Inversionwith a three-layer model with heterogeneoudayers, with prior information about the
depth of basemen. (a) Resulting V, proles. (b) Resulting Vs proles. The black lines are the theoretical
velocity proles. (c) Dispersion curves corresponding to models of gures (a) and (b). The black dots are the
theoretical dispersion curve usedas the target curve during inversion.

0 0 3000
1 @ ] (b) 1 (©)
40- 40- 1
] ] 72000
€ 80— € 80— I .
s | s >
I 5 0o s
A 120+ A 120 o ]
1 1 > 1000
160 160 ]
2007\ \\‘\\\\‘\ 2007\\\\‘\\\\‘\\\\‘\\ \‘\\\\‘ \‘\\\\‘
0 2500 5000 0 1000 2000 3000 05 1 5 10
Vp (m/s) Vs (m/s) Frequency (Hz)

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060
Misfit v$lue

Figure 4.18: Inversion with a three-layer model with heterogeneousayers. (a) Resulting V, proles. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding
to models of gures (a) and (b). The black dots are the theoretical dispersion curve usedas the target curve
during inversion.
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An example of the use of layers with a power law variation in the inversion is shovn in
gure 4.17. This is the samecaseasin gure 4.10wherethe two rst homogeneousayers are
replacedby layers with power law variations. The number of xed layersis v e in eat case.
Two parametersare added to the parameter space(making a total of 10 parameters)of the
inversion plotted in gure 4.10. The V, variation acrossthe layers can vary between O and
2000m/s. The minimum achieved mist is similar to the homogeneougase,but the posterior
uncertainty on the secondlayer is larger in theselater inversions.

This kind of layer is also tested with a large band dispersion curve (from 0.2to 20 Hz) in
gure 4.18. Comparedto gure 4.6, the uncertainty are slightly increased.

4.5 Conclusions

To conclude, gure 4.19 summarizesthe Vs pro les obtained for a three-layer inversion with
uniform velocity layers(from gure 4.6) and with gradiert velocity layers(from gure 4.18),and
for a N-layer model acceptinglow velocity zoneg(from gure 4.14). The calculateduncertairties
are di erent in ead case. The parameterization has a drastic in uence over the inversion of
dispersioncurves, the solution of which is poorly constrainedif the correct prior information is
not introduced.
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Figure 4.19: Comparison of three type of parameterizations (Vs pro les): (a) inversion with a three-layer
model with homogeneoudayers, (b) inversionwith a three-layer model with gradient layers, and (c) ten layers
of xed thicknessesacceptinglow velocity zones.

This chapter shows that even for a simple model with only two cortrasts, the inversion of
the dispersion curve doesnot provide one unique solution. This work highlights the needfor
large band dispersioncurvesin orderto reat deepsoil structures. For real casesthe dispersion
curvesdo not have a perfect shape asit is the casein this chapter. Three-dimensionale ects,
lateral heterogeneities,.. are someof the e ects that may alter the shape of the measuredcurve.
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In this cortext, the prior information is of prime importance.
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Chapter 5
Enhanced Inversions

In this chapter, the inversionof fundamenal Rayleigh dispersioncurves(chapter 2) is extended
to seeraltypesof specialinversions. The rst part is dedicatedto the exploitation of the various
modes, including higher Rayleigh and Love modes. The secondpart dealswith the direct
inversionof spatial auto-correlation curves. Finally, inversionalgorithms are alsodeweloped for
Rayleigh ellipticit y.

5.1 Multimo dal curves

For ambient vibration and active sourceexperimerts, higher Rayleigh modes are sometimes
obsened. The presenceof higher modesdependsupon the depth and the type of acting sources
and upon the stratigraphy (Aki and Richards 2002, Xia et al. 2003,Saccoand Strobbia 2004).
For the interpretation of ambient vibrations, there is absolutely no cortrol over the source
distribution (space,time and energy content). The apparert velocity measuredon vertical
componerts is not always due to body waves and Rayleigh fundamertal mode but higher
modesmay be recordedaswell. The inversion of dispersion curvesdescrited in the preceding
chaptersrequiresthat the target curve usedto calculatethe mist is e ectively the fundamertal
Rayleigh mode. In a similar way, when processingthe horizorntal componerts of ambient noise
measuremets, the frequency-vaverumber method providesthe apparen velocity of the most
energeticwaveswhich may be of Love or Rayleigh type. Again, a correctidenti cation of eah
mode is necessaryto proceedwith a dispersioncurve inversion.

Inverting the higher modesor Love modesmay be promising issuesto improve the obtained
velocity proles. Xia et al. (2003) suggestedthat for the samewavelength, the inversion of
higher modes can "see" deeger than the fundamertal mode. Beaty et al. (2002) obsened
an improvemert of the inversion results when higher modes are included. The horizorntal
componerts are high-pass ltered at a frequencylower than the resonancefrequency unlike
the vertical componerts high-pass Itered around the resonancefrequency (Scherbaum et al.
2003). The horizontal componerts still carry a su cien t signalto noiseratio to provide reliable
information on the wave propagation. Horizontal componeris cortain a mixture of Love and
Rayleigh modesbut somesyrthetic tests show that the Love wave may predominate(Bonnefoy-
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Claudet et al. 2004). The measuremenof the Love curve at a frequencyfor which the Rayleigh
curve cannot be estimated extendsthe frequencyrange of the dispersioncurve. Consequetly,
with the samearray deploymen, the method can give reliable velocity pro les down to deeper
soil structures. Thosetwo assertionsare tested in detail with the deweloped inversiontool.

In a last section, attention is paid to the iderti cation of higher modes. In most cases,
confusing two modes have a dramatic in uence over the nal results and usually ruins the
quality of the obtained velocity pro les. A technique has beendeweloped to identify mode in
an automatic way.

Like in chapter 2, the referencemodel usedin this sectionis descrited in gure 4.1.

5.1.1 Rayleigh higher modes

The fundameral mode and the rst higher mode are consideredhere. The rst higher modeis
inverted alone before being mixed with the fundamertal mode. The fundamertal mode alone
is studied in chapter 4 but it is inverted again to measurethe correctnessof the rst higher
mode when only the fundamertal mode is usedasa constrairt. The e ect of including the rst

higher mode with a narrow frequencyband is nally estimated.

First higher mode alone

The rst highermodecurvein gure 4.1(b) is resampledwith 30 points and a constart frequency
step on a log scalebetween2.75and 20 Hz. This curve is inverted with the parameterization
descrited in table 4.3. The results are shavn in gure 5.1. The fundameral mode is required
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Figure 5.1: Inversionof rst higher mode alone: no prior information. (a) Resulting V,, pro les. (b) Resulting
Vs proles. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding to models
of gures (a) and (b). The grey curvesare the calculated fundamertal mode (lowest curves)and the rst higher
mode (highest curves). The black dots are the theoretical dispersion curve used as the target curve during
inversion. The dotted line is the fundamertal curve, not usedfor the mist computation
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to calculate the rst higher mode (section 3.1.5). This is why both modes are plotted in
gure 5.1(c), clearly visible with two families of curves, the highest velocity valuesbeing the
rst higher mode. The high mist obtained (comparedto lessthan 0.02in gure 4.6) is due
to the bad t of the rst higher mode between6 and 12 Hz. When comparingthe theoretical
fundamenal curve (dotted bladk line) with the calculated fundamertal mode (secondfamily
of curves, the lowest), a clear gap is obsened. In gure 5.1(b), almost no model is generated
with a depth of the rst interface above 20 m. Contrary to fundamerial mode, with this
parameterization, the inversionseemso be trappedin a secondaryminimum of the parameter
spacewith amist around0.1.
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Figure 5.2: Inversionof rst higher mode alone: depth between1 and 20 m/s. (a) Resulting V, pro les. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding
to modelsof gures (a) and (b). The grey curvesare the calculated fundamertal mode (lowest curves) and the
rst higher mode (highest curves). The black dots are the theoretical dispersion curve usedas the target curve
during inversion. The dotted line is the fundamertal curve, not usedfor the mist computation.

To forcethe algorithm to exploreother regionsof the parameterspace the inversionis done
againwith the interval for the rst thicknessreducedto [1;20] m. The results are displayed in
gure 5.2 in the sameway asin gure 5.1. A minimum mist lessthan 0.01is found with a
depth and a fundamertal model that better t the theoretical model. From 4 Hz and below,
the calculatedfundamertal curve doesnot follow the theoretical curve. This indicatesthat the
solution is not completelyinvestigatedby the neighbourhood algorithm and that the rst higher
mode doesnot carry exactly the sameinformation asthe fundamenral mode. Intensive inversion
runs would generategood tting modelswith a fundamertal mode around the theoretical curve
(not donehere). In this case,we know that a better solution existsfor depthslower than 20 m.
But ewven for real casesthis kind of operation is advicedto ched the validity of the obtained
pro les.
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Fundamen tal mode alone

To estimate the quality of the information carried by eatcy mode, it is necessaryto visit again
the fundamenal mode inversion. The inversion plotted in gure 4.6 is relaunded with the
simultaneouscomputation of the rst higher mode. The results are shovn in gure 5.3. Com-
paring gures 5.2(c) and 5.3(c), where all modelswith a mist lessthan 0.1 are selected,the
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Figure 5.3: Inversion of the fundamental mode alone. (a) Resulting V, proles. (b) Resulting Vs pro les.
The black lines are the theoretical velocity pro les. (c) Dispersion curves corresponding to models of gures
(a) and (b). The grey curvesare the calculated fundamertal mode (lowest curves) and the rst higher mode
(highest curves). The black dots are the theoretical dispersion curve usedas the target curve during inversion.
The dotted line is the rst higher mode, not usedfor the mist computation.

deviationsaround the target curves(black dots) are similar. Obviously, the fundamernal curve
o ers a wealer constraint over the depth of the secondlayer than the inversion of the rst
higher mode ( gures 5.2(b) and 5.3(b)). Howewer, the fundamertal curve inversion does not
tolerate Vs greater than 3400m/s just belov 100 m, whereasfor the rst higher mode, many
models with Vs greaterthan 3200m/s are found with a low mist. In gure 5.3, the average
curve calculatedfor the rst higher mode ts perfectly the theoretical curve for all frequencies
belonv 5 Hz. Between5 and 15 Hz, the fundamertal mode doesnot constrain the rst higher
mode, in a similar way that the rst higher mode cannotconstrainthe fundamerial mode belov
5Hz (gure 5.2). From theseobsenations, the fundamertal curve seemdo be necessarnpelon
5 Hz and the rst higher mode is mandatory above 5 Hz, other parts are carrying redundart
informations. Thesethreshold frequenciesare valid only for this caseand do not have a general
meaning.

Fundamen tal and rst higher modes

To ched theseconclusionsthe fundamertal mode belowv 5 Hz and the rst higher mode above
5 Hz arejointly inverted in gure 5.4. The black dots in gure 5.4(c) are the sample points
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Figure 5.4: Inversion of the fundamertal and the rst higher mode. (a) Resulting V, proles. (b) Resulting
Vs proles. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding to models
of gures (a) and (b). The grey curvesare the calculated fundamertal mode (lowest curves)and the rst higher
mode (highest curves). The black dots are the theoretical dispersion curves used as the target curve during
inversion. The dotted lines are the fundamertal and rst higher mode not usedfor the mist computation.

of the inverted dispersion curve. The thin dotted lines are the theoretical dispersion curves
of the unconstrainedparts of the dispersion curves. Theselater onesdo not shov any special
spreadingof the calculateddispersioncurves, proving that they cortain redundart information.

Layer Depth Vo VsV Density
Sedimens 1 1to 20m 200to 2,000m/s 0.01to 0.707 2t/m3
Sedimemns 2 30to 120m +10 to 2,000m/s 0.01to 0.707 2 t/m3

Half-space { 4000to 5,000m/s 0.65t0 0.68 2t/m3

Table 5.1: Parameterizedmodel with a basemem between30and 120m. The "+" sign standsfor incremental
velocity: the parameter is the velocity gap betweenthe rst and the secondlayer.

Layer Depth Vo Vs Vp Density
Sedimens 1 1to 15m 200to 2,000m/s 0.01to 0.707 2t/m3
Sedimems 2 15to 30m +10 to 2,000m/s 0.01to 0.707 2t/m3

Half-space { 4000to 5,000m/s 0.65to 0.68 2t/m3

Table 5.2: Parameterizedmodel with a basemen between15 and 30 m. The "+" sign stands for incremertal
velocity: the parameter is the velocity gap betweenthe rst and the secondlayer.

In areal case the fundamertal dispersioncurve is rarely available down to 0.2 Hz whenthe
rst peakof the ellipticity is at 5 Hz. Usually, one can expect to get a reliable dispersioncurve
only below 5 Hz, which is redundart with the high frequencypart of the rst higher mode. As a
last example,the inversionof the narrow band dispersioncurve shovn in gure 4.7s re-started
adding the rst higher mode as a supplememary constrairt. Like the fundamenal mode, the
higher mode is rarely well de ned at low frequencies. In this case,the rst higher mode is
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supposedto be obsened down to 9 Hz. Five runs are launched with the sameparameterization
as the inversion of gure 4.7. This parameterization cortains very little prior information as
reported by table 4.3. The majority of the models generatedby the neighbourhood algorithm
inside this parameterspacehave a Vs belov 1500m/s down to 120m which cangive the illusion
that the inversionwith the rst high mode really o ers a better constrairt. But three other
inversions(two with the parametersof table 5.1 and one with table 5.2) are alsorun to force
the generationof modelswith a high Vs at shallov depths. The results displayed in gure 5.5
gather all the models of the eight runs. Comparing with gure 4.7, it clearly shaws that the
rst higher mode doesnot provide any special information about deeper layers, becauseit is
possibleto nd modelswith a very good mist having almost any Vs valuesbelov 10 or 15 m.

The samecomposite dispersioncurve is alsoinverted with a prior depth information like in
the inversionshowvn in gure 4.10(not shavn here). There is no signi cant improvemen of the
solution induced by the useof the rst higher mode.
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Figure 5.5: Inversionof the fundamental andthe rst higher mode: narrow band. (a) Resulting V, pro les. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curves corresponding
to modelsof gures (a) and (b). The grey curvesare the calculated fundamertal mode (lowest curves) and the
rst higher mode (highest curves). The black dots are the theoretical dispersion curvesusedasthe target curve
during inversion

Conclusions

In theory, conbining the fundamenal mode with the rst higher mode results in Vs and V,
pro les better de ned over the whole soil column. The in uence of the rst higher mode in
the inversion is probably more complex than the conclusionsof Xia et al. (2003). In our
tests, the rst higher mode alone better constrainsthe velocity of the intermediate layer and
the depth of the basemenh than the fundamertal mode even de ned on a very wide frequency
range. Howeer, the velocity of the half spacebasemenis better retrieved with the fundamertal
mode.
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In areal case,the limited range of the available dispersion curvesruins all positive aspects
of the inclusion of the rst higher mode. Redundancyof both curves(above 5 Hz in this case)
just allows a cross-tiedk of the results found with the fundamenal curve alone.

5.1.2 Love and Rayleigh

From the above results, it can be seenthat the measuremen of the dispersion curve down to
low frequenciess the only way of improving the penetration depth of the method. This issueis
documerted in chapter 2 for the the Rayleigh dispersioncurve. An exampleof a joint dispersion
curve inversionwith the low frequencybeing of Love type is shavn. The Rayleigh fundamertal
dispersioncurve is supposedto be available from 5.5to 15 Hz. The Love fundamenal curve is
assumedto be obsened betweenl and 5 Hz.

Runindex itmax Ns N, parameterization number of models
1to5 150 100 100 table 4.3 5*15100
5to 10 100 100 50 table 4.3 5*10100
. Vp1 2 [160Q 2000]
11 100 100 50 table 4.3 with \L, 2 [104Q1414] 10100
12 100 100 50 table 4.3with z, 2 [120 160] 10100

Table 5.3: Inversionruns for Love-Rayleigh dispersion curves.

Twelve joint inversionprocessesre launched with distinct seedsand their results are gath-
eredin gure 5.6. The parametersof the neighbourhood algorithm and the parameterization
are descriled in table 5.3. The last two runs (11 and 12) are designedto force the seart in
particular zonesof the parameter spaceand to make surethat no model with a low mist can
be found there. Comparing with gure 4.6, inverting without the low frequencypart of the
Rayleigh dispersiondoesnot alter the nal result. Even more,the Love dispersioncurve allows
the retrieval of Vj, and Vs pro les with a lower uncertainty. Though the Love dispersion curve
has no direct relationship with the V, prole, its inversionwith the high frequency Rayleigh
dispersioncurvesimprovesthe de nition of V, even for deeplayerscomparedto Rayleigh alone
inversions( gure 4.7). This issueis out of the scope of this work.

In conclusionto this brief example,inversionof low frequencyLove dispersioncurve together
with higher frequencyRayleigh dispersioncurve is a promising solution to deepen the penetra-
tion limits of an ambient vibration experimert. Howeer, theseinteresting results assumethat
the Love dispersion curve can be determinedwith a su cient degreeof con dence.

5.1.3 Higher mode identi cation

In sections5.1.1and 5.1.2,the modesare supposedto be correctly iderti ed beforeproceeding
with the inversion. In many real casesvhendealingwith the vertical componert, the apparert
dispersion curve with the lowest velocity is usually interpreted as the fundamertal mode of
Rayleigh waves. For active sourceexperimerts measuredat high frequencies(above 10 Hz),
higher modesmay predominate (Gabriels et al. 1987, Forbriger 2003b, Xia et al. 2003,Socco
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Figure 5.6: Joint inversion of the Love and Rayleigh fundamertal modes. (a) Resulting V, proles. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (¢) Rayleigh and (d) Love dispersion
curvescorresponding to modelsof gures (a) and (b). The black dots are the theoretical dispersion curvesused
asthe target curve during inversion.

and Strobbia 2004). For ambient vibrations, which commonly yield dispersion curve at low
frequencieshigher modesare lessstudied but their presencas sometimessuspected. According
to the array resolution power, it is not always possibleto separatemodesand an intermediate
velocity may be obsened. In this last case no post-processingcanbe consideredn the obsened
apparen velocity valuesbecausehere are too much parametersto play with (array geometry
sourcedistance, energy partition between co-existingmodes, ...). A prior knowledge of the
ground structure or other geoplysical acquisitions are necessaryto detect anomalieson the
supposedfundamertal dispersioncurve. This caseis not analysedin this section.

For other casesa bad identi cation of modesmay ruin all inversionresultsasdemonstrated
by Zhang and Chan (2003) and by the following example. The same soil structure as in
section4.2isusedhere. In gure 4.1(b), the fundamerial andthe rst highermodesfor Rayleigh
wavesare very closeto eat other around 9 Hz (osculation point). Depending on experimental
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conditions, it may be possibleto selecta branch belov 9 Hz correspnding to fundamertal mode
and another branch above 9 Hz following the rst higher mode. This situation is depictedin
gure 5.7 wherethe obsened apparert velocity is marked by black dots. At rst glance,the
obtained curve may be interpreted as a single fundamertal mode. This curve is inverted as
the fundamerial Rayleigh mode with a prior information that the depth of the basemen is

situated between95and 105m like in the inversionplotted

2000 in gure 4.10. The results of v e runs are summarizedin
1600; gure 5.8. The black linesin gures 5.8(a) and 5.8(b) are
= the theoretical ground model. The di erence is especially
£1200— strongon the rst 20 metreswherethe velocity pro les are
‘g 800; usually well retrieved. There are more than 50% of bias in
=~ ] the obtained results. For real sites, this phenomenoncan
400{ be detectedonly if external data or a prior knowledgeare

1 also available. Indeed, there is no argumeri to reject the

R RN R

4 6 8 10 20 interpretation of gure 5.8from the dispersioncurve itself.

Frequency (Hz) If the results of the inversion with the fundamertal
Figure 5.7 Composite dispersion Rayl.elgh _mode are far fr(_)m the expected pro les, the in-
curve. The black dots represen the dis- Versionwith other Rayleigh modes can be tested with an
persion asit can be obsened. The grey inversionalgorithm we deweloped to automatically idertify

line are the theoretical dispersioncurves higher modes. The inversionwith this option requiresonly
of the fundamental (plain line) and the

one data curve and the assumption of the number modes
rst higher (dotted line) modes.

(ny) that are encourtered by the data curve. For eath

generatedmodel and for ead frequencysampleof the data
curve, n, modes are simultaneously calculated. Comparedto usual inversions,the mist is
computedin a completely di erent way. The velocity dierence ( v = vg V) at ead fre-
guency betweenthe data velocity and the theoretical Rayleigh velocities of ead mode (up to
Nm) is calculated. Only the minimum value is kept in the summation of equation 3.38. Virtu-
ally, the best tting mode may be di erent for eat frequencysample. Howewer, thesekinds
of oscillations are rarely obsened due to the curve smoothnesswhich naturally restricts the
number of mode changesto one or two on the available frequencyrange. This method e ec-
tively addsoneor two pseudodegreesof freedomto the inversion problem and it is sometimes
necessaryto usemore restricted parameterizedmodel.

The inversion method is tested on the dispersion curve displayed in gure 5.7 with the
assumptionthat two modesmay be presei in the experimenrtal curve. Testswith morethan two
modeshave not beencarried out sofar. The frequencyrange of the dispersioncurve is similar
to the rangeusedin gure 4.7* whereit is clearthat no information below 10 m is recovered.
The parameterizationusedin gure 4.10 (table 4.4) o ers a slightly better constrairt and is
chosenfor the inversion with automatic mode iderti cation. The results of the v e inversion
runs (5*15100 models) are gatheredin gure 5.9. In gure 5.9(c), two modesare plotted for

1The range is extendedto 4 Hz in this caseto get larger frequency range for the fundamertal mode. Tests
with alimit at 5.5 Hz do not work becausethe velocity rise is not su cien tly marked.
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Figure 5.8: Inversion of the composite curve assuming fundamertal mode. (a) Resulting V,, proles. (b)
Resulting Vs proles. The black lines are the theoretical velocity proles. (¢) Fundamertal mode dispersion
curvescorresponding to models of gures (a) and (b). The black dots are the composite dispersion curvesused
asthe target curve during inversion.
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Figure 5.9: Inversionof the composite curve with mode identi cation. (a) Resulting V,, pro les. (b) Resulting
Vs pro les. The black lines are the theoretical velocity pro les. (c) Fundamenrtal and rst higher mode dispersion
curvescorresponding to models of gures (a) and (b). The black dots are the composite dispersion curvesused
asthe target curve during inversion.
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Figure 5.10: Inversionof the composite curve with mode identi cation, splitting model families. (a), (d), (g),
and (j) Resulting V, proles. (b), (e), (h), and (k) Resulting Vs proles. The black lines are the theoretical
velocity proles. (c), (f), (i), and (I) Fundamertal (below) and rst higher (above) mode dispersion curves
corresponding to models of the other gures. The black dots are the composite dispersion curvesused as the
target curve during inversion (seetext for details).
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ead model in gures 5.9(a) and 5.9(b).

Four families of curveswith low mist valuescan be distinguished. For clarity, thesefour
categoriesare shavn individually in gure 5.10. In the rst category( gures 5.10(a)to 5.10(c)),
the data curve is consideredas being ertirely the rst higher mode. The minimum achieved
mis t is higher (0.055) than for other groups,but it doesnot automatically meanthat models
are to be discarded. Valid argumerts to reject them would be that super cial measuremets
revealeda lower Vs or that a strong cortrast between40and 60 m is not geologicallyadmissible.
The secondcategory is the sameas our rst hypothese(all data consideredas fundamerial
mode). Lower mist values are obtained (0.025). Here again, complememtary acquisitions
about the super cial Vs or depth criteria help to discard those models. In the third family of
models, the data curvesis also likenedto rst higher mode but in a dierent way than the
rst category Herethe di erence with the theoretical model in terms of Vs and depth is more
subtile. The measuremen of the dispersion curve on a larger frequencyband, for instanceif
Love modes can be obsened, may help the interpretation. And nally in the last category
a mode jump is noticed around 9 Hz and the velocity pro les correspnd to the theoretical
ground model. The parameter spacesampling is certainly not exhaustive for depth below
100 m. Further model generation can be conductedwith a shallov depth restricted around
10 m to get a more complete and con rmed model uncertainty (not done here). Testswere
conducted with the parameterization of table 4.3 but nothing could be retrieved due to the
insu cien t level of constrairt.

This algorithm allows a great exibilit y to scanthe various modespossibly cortained in the
obsened dispersion curve. However, it adds at least one more degreeof freedom, increasing
then the non-uniquenesf the problem. The prior information are here, probably more than
elsewherepf prime importanceto selectthe right model family.

Exactly the sametechnique hasalsobeentested on syrnthetics to identify Love and Rayleigh
modes (not shawvn here).

5.2 Spatial auto-correlation

In section 3.3, it is showvn that auto-correlation curves are theoretically calculated from the
dispersion curves. Classically obtaining the Vs prole at one site is a two-stageprocessing:
derivation of the dispersion curve from the auto-correlation curveswith a least-squarescheme
(e.g. Bettig et al. 2001) and inversion of the dispersion curve to determine the Vg pro le.
Recertly, Asten et al. (2004) proposedto mergethem into a single inversion basedon least-
square optimisation (Herrmann 1994), allowing the determination of Vs(z) directly from the
auto-correlation curves. The approad proposed here is conceptually the same except that
we make use of the neighbourhood algorithm (section 2.3) for the inversion. It allows an
exploration of nearly all equivalert minima in terms of the mist function and thus enables
additionally an improved uncertainty analysiswhen comparedto classicallinearized inversion
schemes (least-squares). Shapiro (1996) shaved, that the solutions obtained from classical
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surfacewave inversionsdiemesare too restrictive and uncertairties are not correctly estimated.

The text and the gures of this section are extracted from a paper we submitted to the
Bulletin of SeismologicalScciety of America in October 2004. This is why the referencemodel
utilized herebelow di ers from the oneusedin other sections.

5.2.1 Uniqueness of auto-correlation curves

The auto-correlationinversionhasbasicallythe samelimits asthe dispersioncurve inversion,as
auto-correlation curvesare calculatedfrom dispersioncurves: non-uniguenesslossof resolution
with depth and equivalencefor pro les with low velocity zones. As we plan to invert auto-
correlation curvesto obtain Vs pro les, we rst addressthe questionof the relationship between
auto-correlation and dispersion curves. Obviously, equation (3.47) does not insure a one-to-
onerelation betweenthe two typesof curves,asthe argumeris for Jo(x) that satisfy equation
(3.47) can be numerousfor small valuesof (r;!). Howewer, equation (3.47) does not imply
any coupling of ¢(! ) with the auto-correlation at other frequenciesthan ! , meaningthat the
inversioncanbe madeindependerly frequencyby frequency Consequetly, transforming auto-
correlation curvesat frequency! into their equivalert commondispersioncurve is just a matter
of solving a systemof equationsof the sameform as (3.47) (one equation by consideredring)
and solutionsc(! ) are discretenumbers. If all the auto-correlation curvesfor the di erent rings
are consistem with ead other, there is a minimum of one solution that satis es all apertures.
From the discretenature of the solutionsand the number of rings likely to be consideredthere
is little chanceof having two distinct solutionsfor ¢(! ) that perfectly match all equations.

5.2.2 Synthetic model

The inversion method is rst applied on a perfect syrnthetic model de ned by a sedimenary

layer overlying a rocky basemehn Vs and V, valuesinside the two layers are plotted on gure

5.11(a)and 5.11(b) (black lines). We setup a 100m aperture array with a quasi-circularshape
characteristics of which are given in gure 3.24(a). From the azimuth-distance plot of gure

3.24(b), we selected v e distinct rings including 7 to 12 station pairs ead, with an averageof
ten. The limits of rings are arbitrary chosen. Parametric tests shav that the nal results are
very little dependert on the ring selection. We intro duce uncertainties into the original model
assuminga normal distribution around the averagemodel (black plain lines, gures 5.11(a)
and 5.11(b)) with the standard deviation shavn by dotted linesin the same gure. Theoretical
auto-correlation ratios were computed for 5000randomly generatedmodels, keepingPoisson's
ratio constart. Auto-correlation curvesfor the v e rings are regularly distributed around the

onescomputedfor the averagemodel (black dots of gures 5.11(d)to 5.11(h)).

5.2.3 Validation of auto-correlations

The measuredauto-correlation curvesdo not always t the shape of Bessel'sfunction and the
systemof auto-correlationequations(of type (3.47) or (3.48)) may have no commonsolution for
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Figure 5.11: Referencemodel for auto-correlation inversion. (a) V, pro les: input averagemodel (plain line),
input standard deviations (dotted lines) and generatedrandom models ranked by their auto-correlation mis t
(common grey scale). (b) Vs Proles: samelegendas for V,. (c) Dispersion curves of random models for the
fundamental mode of Rayleigh. (d) to (h) Auto-correlation ratios for chosenrings plotted against frequency
averageand standard deviation for all samples(dots).

all array apertures. Feedingthe inversionprocesswith cortradictory auto-correlation curvesis
likely to give an uncortrolled averagesolution. If the cortradiction comesfrom a defectin the

array response(e.g. too wide aperture for the consideredwavelength) or in the noise cortent

(e.g. uncorrelated noisedue to long distance betweensensorsfor the consideredfrequency or

insu cien t energylevel at low frequency),the probability of obtaining an unrealistic solution
is high. A selectionof the relevant parts of the auto-correlation curvesis thus necessary The
problemis complexand there are no objective and commonlyapplicablerules. Without a prior

knowledgeof the soil structure, the only reliable featuresare the array geometryand the auto-
correlation curves themsehes. From the array geometry somerough limits can be deduced
for a correct responsein terms of waverumber (Woods and Lintz 1973, Asten and Henstridge
1984), theoretically for the frequency-vaverumber processingonly (section 1.1.1 on page7).

On the other hand, from the auto-correlation curves for the di erent rings, we can test the
consistencyof the systemof equations,and discard the samplesthat are obviously out of the
generaltrend.

Practically, from a very large a priori in terms of apparert velocity (e.g. from 100to 3000
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m/s), all possiblesolutionsc(! ) of equation (3.47) or (3.48) are calculated independerily for
ead ring. For doing so, we de ne the function:

g(ci! )= cac(r;! ;0 ops(ri!) (5.1)

where,! is the consideredfrequencyband, . is calculatedby equation (3.47) or (3.48), and

obs IS the auto-correlationratio calculatedon the recordedsignals. The roots of function g(c;! )
are successigly bracketed by a coarsegrid seart starting from the lowest velocity, and then
re ned by an iterative schemebasedon the Lagrangepolynomial constructed by the Neville's
method (Presset al. 1992). The samealgorithm asfor the internal computation of dispersion
curves is used (section 3.1.5). In a secondstage, we construct a grid for ead ring in the
frequency-slavnessdomain. The grid cellsare lled with 1 if at leastonesolution existswithin
the cell, with 0in the cortrary case.All the grids are stacked and the valuesin ead cell give the
number of consisten rings for a particular cou-
ple frequency-slavness. If the auto-correlation
curves are consisten, the cellswherethe den-

0.006

sity of solutionsis maximum should delineate i
the correspnding dispersion curve. From this
plot, we determinethe minimum and the max-
imum slovnessfor eah frequency as well as
the minimum and the maximum waverum-

Slowness (s/m)

ber for which we obsene a focuseddispersion
curve. To reducethe subjectivity of the se-
lection, zoneswhere no clear consistencybe- ]
tween auto-correlation curves is obsened are
systematically rejected. Once the dispersion
curve limits are set, it is straightforward to
reject the cortradictory data on the auto-
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correlation curves. This procedureis tested on
the pure syrthetic case( gure 5.11) whereno

cortradictory samplesare preset in the auto- Figure 5.12: Grids in frequency-slavness domain

correlation curves. Figure 5.12 shaws the re-
sulting frequency-slavnessgrid obtained after
seekingfor all possiblesolutions. The disper-
sion curve can be enirely retrieved from the
auto-correlation curves between 1 and 10 Hz.

represerning the density of dispersion curve solutions.
(a) Solutions of equation (3.48) for the perfect auto-
correlation curvesof gure 5.11. The theoretical dis-
persion curve is represerted by a plain line.

When the auto-correlation value is lessthan

0.025(arbitrary threshold to avoid an in nite  number of solutions), no solution is calculated.
This is why, for high frequency the large apertures provide no points and hencethe density
vanishesto oneor two occurrencesonly.
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5.2.4 Inversion

A two-layer model is consideredwith the parameterrangesspeci ed in table 5.4. In the shallow
layer, the velocity canincreasewith a power law relation, and the parametersarefour (Vp, Vs=V,
the thicknessand the V, increasebetweenthe top and the bottom). The constart velocity layer
correspndingto the true model is a particular realization of the parameterization. The bedrock
parametersare two (V, increase,and Vs=V). The neighbourhood algorithm has beenstarted
using 3 independent runs with distinct random seeds,generating a total of 30,000 models.
Among them about 13,500have a mist lessthan 1 and are plotted in gure 5.13. The lowest
mist is 0.03.

Layer Thickness Vo Vs=\p Density 'V, variation
Sedimens 10to 50m 200to 2,000m/s 0.01to 0.707 2t/m3 10to 1,000m/s
Half-space { +10 to 3,000m/s 0.01to 0.707 2t/m3 {

Table 5.4: Parameters for auto-correlation inversion. The \+" sign stands for incremertal velocity: the
parameter is the velocity gap betweenthe rst and the secondlayer. The power law gradient acrossthe rst
layer is represented by a stack of 5 sub-layers. The value of the parameter is the total velocity variation across
the layer.

The Vs and V, models resulting from the auto-correlation inversion are plotted in gures
5.13(a) and 5.13(b) with their mist value. On these gures, is drawn the theoretical model of
gure 5.11. Most of the solutionswith a mis t lower than 0.4 are ableto explainin a consisten
way the auto-correlation data given their standard deviations ( gures 5.13(a)and 5.13(b)). In
gure 5.13(c) are plotted the correspnding dispersion curves. The Vs prole (gure 5.13(b))
is very well constrainedfrom 6 to 20 metresdeep. The very super cial layers (lessthan 6 m)
are at a depth lower than one third of the minimum wave length (20 m) and Vs values are
lessconstrained, resulting from the limited bandwidth at high frequency Below 35 metre, V
valuesare well retrieved due to the wide low frequencyrange of the auto-correlation curves. In
real data, this well constrainedvelocity in the bedrock is usually missingdue to the site high-
pass Iter of the Rayleigh waves belov the fundamenal frequency (Scherbaum et al. 2003,
chapter 6). The dispersioncurvescomputedfor the best tting modelscomparevery well with
the theoretical one ( gures 5.11(c)and 5.13(c)). The resolution is relatively poor between 22
m and 35 m: a velocity jump at 22 metres givesa mist value equivalert to the one for a
cortrast at 35 metres. Other inversiontests (not presered here) have showvn that this lack of
resolution results from the uncertainties consideredon the auto-correlation data. Howeer, the
lowest mist model correctly nds an interface around 25 m depth.

Usually, V, hasa low in uence on the dispersion curve, and henceon the auto-correlation
curves. Boore and Tokssz (1969) proved for a v e-layer model that the in uence of V, on the
dispersion curve is about onetenth the in uence of Vs. However, for low Poisson'sratios, V,
hasmorein uence. In this latter situation, the nal Vs prole dependsupon the correctnessof
the V, pro le. In classicaliterativ e inversions(least-squaresdieme), Vs=\,, or Poisson'sratio is
kept constart becausethe small in uence of V,, on the auto-correlation curves generally leads
to unrealistic velocities. For the neighbourhood algorithm inversions,the parameterizationis
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Figure 5.13: Inversion of the auto-correlation curves. (a) V, proles: true averagemodel (plain line), true
standard deviations (dotted lines) and inverted models ranked by their auto-correlation mist (common grey
scale). (b) Vs Proles: samelegendas for V,. (c) Dispersion curves of generated models. (d) to (h) Auto-
correlation ratios for chosenrings plotted against frequency averageand standard deviation of data points to
be tted (dots).

easily adjustedto t the physical limits of V,, and the prior information, for instance, about
the super cial valuesof V,. When no information are available about V,, it is still usedasa
parameter with large prior intervals to prevert from altering the nal result with unreliable
assumptions.For this inversiontest, we assumedhat no prior information exist on V,. As the
Poisson'sratio for the theoretical model is 0.49,the compressional-ave velocity (V,) prole is
badly recosered. Equivalert models are found for the whole prior V, range (from 200to 2000
m/s in the upper layer).
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5.3 Ellipticit y inversion

The principles and the solutions deweloped for the in-

versionof the Rayleigh ellipticity are discussedn sec-
tion 3.2. The ellipticity shavn in gure 4.1(d) is rst 8
inverted alonewith a simple model made of one layer 19
overlaying an in nite half-space.The shape of the el- 1

lipticit y curvesis not inverted but only the frequency E -
of peak, which is exactly found at 5.63Hz. The sec- ¥ Sf
ondary peak at 3 Hz is not consideredhere. It is not 1
possibleto retrieve a complete ground structure only 4;

from the frequency of the ellipticity peak. Hence,a ]

model with only two parameters(thicknessand V) S— —
is usedin the inversion, detailed in table 5.5. The 100 200

. . Vs0 (m/s
Vs=\;, value in the half spaceis xed to ensurea con-

stant Vs of 1000 m/s. Five runs are launched with 0020 0030 M.%MOI 0050 0060
ISTIt value

ten iterations eat generatinga total of 5500models.
The minimum mist adieved is 0, becauseonly one Figure 5.14: Inversionof the ellipticit y alone
singlefrequencyis t with a precisionof 10 * Hz. The showingthe trade-o betweenthe depth of the
results are shavn in gure 5.14. A clear relationship Velocity contrast and Vs.

betweenthe thicknessand Vg, is found corroborating

the conclusionsof Scherbaumet al. (2003)about the inversionof the frequencyof the ellipticity

peakfor a two-layer model. The theoretical model hasa z; of 10 m and Vg is 200m/s.

Layer  Thickness Vo Vs=\p Density
Sedimetns 1to50m 375m/s 0.01to 0.707 2t/m3
Half-space { 1750m/s 0.57143 2t/m3

Table 5.5: Parametersfor ellipticit y alone inversion.

The last example con rmed that the frequency of the ellipticity peak contains pertinent
information about the thicknessand the shearvelocity of the rst layer. The ellipticity target
is then addedto a usualdispersioncurve inversionto test its ability to improvethe nal solution.
The caseof a narrow frequencyband and a two-layer parameterization inverted in gure 4.5
is utilized again. As detailed in section3.2, the mist is calculated by a weighed sum of the
dispersion and the ellipticity mists. 10 and 90 % weights were chosenfor the dispersionand
the ellipticity mis ts, respectively. This ensureshat nearly all generatedmodel are complying
with an ellipticity peak at 5.63 Hz. Consequetly, to achieve a comparablegood t of the
dispersioncurve asin gure 4.5,the mist scaleis divided by 10. Five runs are launched with
the parametersdescriked in table 4.2. To make sure that the parameter spaceis su cien tly
sampledin terms of z; (depth of the top of the half space),two more inversion processesre
started with the depth restricted to [8;10] m and [11; 14] m, respectively. The ensenble of all
modelswith a mist lessthan 0.01is plotted in gure 5.15.
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Figure 5.15: Join inversion of the dispersion curve and the ellipticit y peak. (a) Resulting V, proles. (b)
Resulting Vs pro les. The black lines are the theoretical velocity pro les. (c) Dispersion curvescorresponding
to models of gures (a) and (b). The black dots are the theoretical dispersion curvesused as the target curve
during inversion. (d) Ellipticit y curves calculated for models of gures (a) and (b). The black dots are the
theoretical ellipticit y curve but only the frequency of the main peak is used as the inversion target.

Comparedto gure 4.5,the posterior error obtained for the depth of the basemen interface
is greatly reduced. According to the level of con denceput into the dispersioncurve, the depth
is known with a one-metre precision whereasthe uncertainty in gure 4.5 is much greater.
Howewer the velocity in deeper layer is not retrieved as in the rst inversion. Tests were
also conductedwith a three-layer parameterization but no signi cant improvemen has been
obsened. Other inversionscould have been started with the low frequency secondarypeak
appearingin gure 4.1(d) at 3 Hz, but there are few chancesfor this peakto be detectedwith
a real experimert.



108 CHAPTER 5. ENHANCED INVERSIONS



Chapter 6
Test cases

In the precedingchapters, a exible and powerful algorithm is deweloped for the inversion of
dispersioncurves. Its capabilities have beenproved in the caseof noiselesslata curves. In this
chapter, the dispersion curves (or the auto-correlation curves) are retrieved from a synthetic
and a real wave eld with the techniquesdescrited in chapter 1 and they are inverted. Even for
noisy obsenables,the inversiontool revealsitself asan e cient way to infer the soil structure
together with its global uncertairty.

A specialattention is paid to the interpretation of multiple array geometries.The advantages
and the drawbadks of eadr method and eat con guration are exploited to deweloped robust
guidelinesfor the interpretation of real measuremets.

6.1 Synthetic ambient vibrations

In this section,the recordedsignalsare simulated with the method deweloped by Hisada(1994).
The theoretical model is described hereafter. Then, the signalsare processedvith the methods
detailed in chapter 1.

6.1.1 Mo del description

The syrthetic ground model is composedof a soil layer with a thicknessof 25 m overlying
an in nite bedrock. The properties of ead layer are speci ed in table 6.1. The theoretical

Thickness Vo Vs Density Qp, Qs
25m 1350m/s 200m/s 1.9t/m=3 50 25
{ 2000m/s 1000m/s 2.5t/m3 100 50

Table 6.1: Properties of the referencemodel.

Rayleigh dispersion curves (the fundamertal and the rst four higher modesin the caseof an
elastic media) for this model are shavn in gure 6.1(a) betweenl1 and 15 Hz. For frequencies
belov 15 Hz, only the rst v e modesare presen and appear to be well separatedin terms
of velocity. Figure 6.1(b) shows the fundamertal ellipticity and the Sy, transfer function. The

109
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fundamenal resonancefrequencyis 2 Hz while the peak of the fundamenal ellipticity is at
1.9 Hz. This frequencydi erence, recerly studied by Malischewsky and Scterbaum (2004),
is mainly in uenced by the magnitude of the velocity cortrast betweenthe sedimeis and the
bedrock.
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Figure 6.1: Theoretical model for synthetic ambient vibrations. (a) Dispersion curves for Rayleigh modes
calculated with the synthetic model: fundamertal model (thick plain line), rst (thick dashedline), second
(thin plain line), third (thin dashedline), and fourth higher mode (thin dotted line). Other modesdo not exist
in the plotted range. (b) Theoretical Sy transfer function for the synthetic model (plain line) and fundamental
Rayleigh ellipticit y curve (dotted line).
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Figure 6.2: Spectral curvesof the certral station of array A to C. The plain line is the averageand the dashed
lines are located at one standard deviation. (a) Amplitude spectrum of the vertical componert. (b) Amplitude
spectrum of one horizontal componert. (c) Spectral ratio Horizontal to Vertical (H/V). Grey bands indicate
the averageand standard deviation of the frequency peak valuesobsened for ead individual time window.

Synthetic ambient vibrations have beencomputedduring 6 minutes using the method pro-
posedby Hisada (1994 and 1995), and Bonnefg/-Claudet et al. (2004) which is valid for a
one-dimensionaimodel with sourcesand receiwers placedat any depth. This datasetincludes
333 sourcepoints randomly distributed from 140to 750 m from the certral receiver. Sources
are punctual forceswith delta-like functions of random amplitudes and directions. All typesof
waves existing in sud media are modelled generatinga wave eld cornaining body, Love and
Rayleigh waves. The frequency spectrum of generatedwavesis limited to 15 Hz in order to
reduce CPU time. The spectra of the vertical (V) and one horizontal (H) componert of the
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certral station is showvn in gure 6.2(a)and 6.2(b), aswell asthe H over V ratio ( gure 6.2(c)).
The frequencyof the H/V peak(2 Hz) matchesthe resonancdrequencyof the soft layer ( gure
6.1(b)). The Fourier spectra shav that the energyof the vertical component vanishesin the
vicinity of and below the fundamertal frequencyasreported by Sterbaumet al. (2003), while
the energyon the horizontal componert decreasedelov 1.5 Hz.
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Figure 6.3: Array geometriesand their f-k responses. (a), (d) and (g) Geometriesof arrays for arrays A, B,
and C, respectively. (b), (e) and (h) Their corresponding theoretical frequency-wavenumber responses. The
circles correspond to the chosenwavenumber limits detailed in table 6.2. (c), (f) and (i) Sectionsacrossseeral
azimuths for the theoretical frequency-wavenumber grids of arrays A, B, and C, respectively. The black curve
is oriented along the line drawn in gures (b), (e) and (h).

On this model we set up three arrays (labelled A, B and C) the geometriesof which are
plotted in gures 6.3(a), 6.3(c) and 6.3(e), respectively. Array A is composedof nine sensors
roughly distributed around a certral sensorwith an approximate aperture of 25 metres. Array
B is made of three triangles approximately rotated by 40 and with increasingaperture up
to 90 metres. Finally, array C is made of nine sensorsroughly distributed around a certral
sensor,with an appraximate aperture of 100metres. Theoretical f-k responseg(section1.1.1on
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Array name | Min. dist. Max. dist.  Kmin ~ Kmax fmin  fmax
A 8m 25m 0.095 150 4.4 15.0
B 13m 87 m 0.037 0.495 325 7.6
C 34m 99 m 0.024 0.39 3.0 7.2

Table 6.2: Properties of the array geometries. For ead array the minimum and maximum distance between
sensors. The minimum and maximum wavenumbers deduced from the theoretical frequency-wavenumber re-
sponsesin gures 6.3(b), 6.3(e) and 6.3(h). Also the minimum and maximum frequenciescorresponding to
those wavenumbers (Hz).

page7) for arrays A, B, and C are showvn in gures 6.3(b), 6.3(d) and 6.3(f), respectively. The

resolution and aliasing limits deducedfrom Woods and Lintz (1973) and Asten and Henstridge
(1984) criteria are marked by circlesand are summarizedin table 6.2. Sectionsare madeacross
eadt of them alongse\eral azimuths (628) and they are plotted by grey curvesin gures 6.3(c),
6.3(e) and 6.3(g). The bold black curvescorresmpnd to the minimum aliasing azimuths which

are marked by black linesin gures 6.3(b), (d) and (f). From equation (1.2), a wave travelling

at kmax appearsin the senblance map with the main peakright on the aliasing limit and the

lateral aliasing peaksgreaterthan 0.5 are located on a circle crossingthe origin. In the case
of a complexwave eld with wavestravelling in seweral directions, there are lot of chancesto

confusethe true peak with sums of secondaryaliasing peaksthat do not correspnd to the

correct apparert velocity. Hence,a safeapproad would be to limit the valid rangeto kmax =2,

which is illustrated by the results of the next sections.

6.1.2 Single source wave eld

The f-k method is rst applied to a wave eld produced by a single source of the afore-
mertioned dataset, situated at about 650 m (310 courted clockwise from the North or Y
axis) from the certre of arrays A, B and C. The

S01B Z sourceis punctual with a force vector oriented
S02B 2 alongdirection 293 and inclined at 50 from the
SO3A Z— : : : : : : ,

S04B 7 vertical axis. From its orientation and its posi-
S05B Z tion far from the arrays, Rayleigh wavesare sup-
S06A Z- posedto be mainly recorded. The signalscom-
2822 ;: puted at the ten receiwers of array B are shown
S09A 7 in gure 6.4. Their energyis spreadover a 6 sec-
S10A Z— ond period for a total calculated duration of 360

3é s 46 s 44‘1 S 4é s Sseconds.

Time The array response is calculated for single

Figure 6.4: Single sourcewave eld measuredby windows of varying durations: 20s,6 s, and 3 s,
the vertical sensorsof array B. all certred around the most energeticpart of the

signal. The velocity at the senblance maximum
is plot for all frequencybandsin gures 6.5(a) to 6.5(c), for the duration 20s, 6 sand 3 s,
respectively. The theoretical dispersion curves (the fundamenal and the rst three higher
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modes) are plotted on the samegraphsfor comparison. The validity curvesare drawn at con-
stant kn,in (plain lines), knax =2(dotted lines) and knax (dashedlines). For the long time window,
the velocity determination is nearly perfect for the whole frequencyrange exceptbelon 2 Hz,
which correspnds to 40 cycles(20 s times 2 Hz). When decreasingthe time length of the
processedsignal, the dispersioncurve quality is degradingat low frequency We de ne a mini-
mum threshold frequencyin ead caseindicating wherethe calculated dispersion curve leaves
the theoretical curve. For the six-secondwindow this threshold frequencyis around 2.5 Hz (15
cycles)and around 5 Hz (15 cycles)for the three-secondcase. Comparing to the response of
the arrays A and C, gures 6.6(a) and 6.6(b), respectively (six-secondtime window), it can
be obsened that the limit of 2.5 Hz is independen of the array aperture or array geometry
Array A providesa correct velocity estimation, though being far outside the valid waverumber
range. This frequencylimit is linked to the energycortent of the vertical spectrum showvn in
gure 6.2(a) asreported by Scderbaumet al. (2003).
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Figure 6.5: Frequency-wavenumber analysis for array B with various time windows: (a) 20 s., (b) 6 s., and
(c) 3 s. For eadh plot, the thin lines are the theoretical dispersion curvesfor the original ground model ( rst
modal curvesof gure 6.1). The three exponertial curvesrepresen constart wavenumber curvesvaluesof which
are deducedfrom theoretical frequency-wavenumber response( gure 6.3): minimum (continuousline), half the
maximum (dots) and maximum wavenumber (dashed).

The calculated curvesin gures 6.5(b), 6.5(c), 6.6(a) and 6.6(b) shav at least two major
defects:onelocated at 4 Hz wherethe velocity increaseis not retrieved and the other between
6 and 9 Hz, especially obvious for array A. The rst oneis not presert on the 20 s. results
(gure 6.5(a)), proving that the choice of a long enoughwindow is crucial to correctly process
the signals. The seconddefectmay be investigatedby examiningthe responsesof arrays A and
B in the plane (ky; ky) (gures 6.7(a) and 6.7(b)). Below 6 Hz (not shown here) the shape of
the array responseis quite similar to the theoretical response,supporting the assumptionof a
singledominarnt surfacewave. Above 6 Hz, the generalshape is changing with the apparition
of a secondarymain peak at higher velocity, as shovn by gure 6.7 (calculated at 6.5 Hz).
Becauseof its relative low resolution limit ([Kmin ]s < [Kmin Ja), @rray A cannot distinguish the
two peaksand the exact position of the fundamertal peak is shifted erroneouslytowards a
higher velocity. This explainsthe velocity bump on the dispersioncurve of gure 6.6(a).

The signal processingshows that the simulated vibrations are mostly composedof surface
wave which dispersioncurve is perfectly retrieved in gure 6.5(a) above 2.5 Hz. Wavestravel-



114 CHAPTER 6. TEST CASES

0.4 (@ (b)
1000
800- @) (b) | £ 02-
2z ] 8 0.0-
> 600 z-02
&) ]
S 400 0.4
> 200; 7\\‘\\H‘\H\‘\H\‘H\\‘\\\\‘\\H‘\H\‘\H\‘H\\‘\\
] -0.4-0.2 0.0 0.2 04 -04-0.20.0 0.2 04
T ‘ L \‘\H‘\H‘\H‘ T ‘ L \‘\H‘\H‘\H‘ kx(rad/m) kx(rad/m)
2 4 6 810 2 4 6 810
Frequency (Hz) Frequency (Hz) ‘ ‘ —
8.0e-05 1.6e-04 3.2e-04 6.4e-04
Figure 6.6: Frequency-waverumber analysisfor ar- Array response
raysA and C in gures (a) and (b), respectively. The ) .
window length is 6 seconds. Figure 6.7: Array responsesfor arrays A and B in

gures (a) and (b), respectively, calculatedat 6.5Hz.

ling at a higher velocity are detectedbetween6 and 9 Hz ( gures 6.6(a) and 6.7(b)), probably
correspnding to the rst higher mode. Comparisonof arrays with di erent resolving power
allows the rejection of non trusted samples. The parametersof the signal processing particu-
larly the choiceof a too short time window, may introduce undesirablee ect on the dispersion
curve construction. The results obtained with a single sourcesuggestthe use of windows of at
least 15to 40 periods. In the following, a complexwave eld is analysedby the meansof three
processingtechniques (frequency-vaverumber, high resolution and auto-correlation methods).

6.1.3 Frequency-w avenumber metho d

The cortributions of 333 sourcessimilar to the one analysedin the last section are summed
together to simulate ambient vibrations. To estimate the uncertainty on the apparern velocity

determination, the whole signalsare split in seweral smallertime windows for which the array

responsesare computed. For eat time window, the velocity of the senblance peakis searted
for waverumbers belon 1.5 rad/m and for velocities between150and 2000m/s. From a coarse
griding in the waverumber plane, the vector (ky; ky) of the highest peakis iteratively re ned

to an arbitrary small precision. Thus, for ead frequencyband, an histogram of the velocities
at the obsened maxima is constructed (e.g. gure 6.8(a) for array C and 10 cycles). The

areasbelow the histogramsare normalizedto onein the slovnessdomain, explaining the high

valuesfor the probability density functions. The curvesin gure 6.8(c) are sectionsacrossthe

histogramsof gures 6.8(a) and 6.8(b) at 3 Hz.

The in uence of the window length is rst cheded by calculating the histogramsfor time
windows cortaining 10 and 50 cycles( gures 6.8(a) and 6.8(b), respectively) for array C. The
theoretical dispersioncurvesarerepreseted by the three thin plain lines. The three exponertial
curves(validity curves)represem constart waverumber curvesvaluesof which correspndto the
deducedkn,, (cortinuousline) and ki (dashedline). The dotted line is situated at Kyax =2.
In gure 6.8(a), the averagedeviatesfrom the theoretical dispersioncurve with a constart bias
of 50 or 100 m/s towards lower velocity, whereasall the velocity estimatesare closerto the
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Figure 6.8: Comparison of frequency-wavenumber analysis for array C, in uence of the time window length.
(a) Histograms of velocities with a maximum f senblance obtained with time windows of 10 cycles. (b) Same
processingwith time windows of 50 cycles. (c) Crosssectionat 3 Hz, of the histograms of gures (a) and (b),
shown by dotted and plain lines, respectively. The curvesare of the sametypesasin gure 6.5.

theoretical curve and the standard deviations are much smaller for the 50-cyclecase( gure
6.8(b)). Both casesare calculated with the sameduration of signals(six minutes), resulting
in v e times more windows in the 10-cyclecase. To test the robustnessof the statistics, one
minute and 12 secondof signalsare alsoprocessedvith time windows of 10 cycles,containing
the samenumber of time windows as in the 50-cyclecasecalculated with the six minutes of
signals. The obtained histograms are the sameas in gure 6.8(a). Hence,with short time
windows, increasingthe number of samplesneither reducesthe gapto the theoretical curve nor
the sizeof resulting error bars.

A similar processings applied to the signalsof arrays A and B (six minutes of signalsand
time windows of 50 cycles). The velocity histogramsof arrays A, B and C can be comparedin
gures 6.9(a), 6.9(b) and 6.8(b), respectively. The validity curvesof constart waverumber are
drawn in the sameway asin gure 6.8. For all arrays, kn,in is clearly linked to the point where
the velocity estimatesstrongly deviate from the theoretical dispersioncurve shovn with the thin
black lines. In gure 6.8(b), bad estimations of velocity due to aliasing take place e ectively
between Kmax =2 and kmax. A similar conclusioncould be drawn for array B, where errors
towards low velocity slightly increaseabove kmax =2. Due to the limited available frequency
range, the aliasing e ect cannot be obsened for array A. Betweenthe limits kp,in and Knyax =2,
arrays B and C exhibit correctvelocity estimates. For array A, the measuredvelocity is slightly
above the theoretical Rayleigh velocity with a velocity bump between6 and 9 Hz similar to the
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oneof gure 6.6(a). For eat array, an averageand a standard deviation is calculated between
Kmin and kmax =2 basedon the histograms of gures 6.8(b) and 6.9. The three curves are

averagedtaking into accoun the respective weights (number of time windows) to construct the

nal dispersioncurve plotted in gure 6.10. The measureddispersionis reliable for frequencies
above 3 Hz. This limit is linkedto the array sizesbut alsoto the dramatic decreasef the noise
vertical componert amplitude closeto the fundamernal resonancdrequency(2 Hz).
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Figure 6.9: Results of the frequency-wavenumber
method applied to arrays A (a) and B (b) with time
windows including 50 cyclesasin gure 6.8(b). The
histograms are of the sametype asat gure 6.5, the
curves as well. Wavenumber limits correspond to
ead array geometry.

The obtained dispersion curve is inverted with v e distinct runs of the neighbourhood
algorithm, generatinga total of 50,000models. The parameterizedmodel consistsof a sedimen
layer the wave velocity of which increaseswith depth accordingto a power law, and a half-space
at the base. The parametersare six: V, and Vs=\; in the two layers, the layer thicknessand
the V, increasebetween the top and the bottom of the sedimen layer. Figure 6.11(a) and
6.11(b) shav the velocity pro les obtained for V, and Vs, respectively, for all models tting the
dispersioncurve with amis t lower than one. The mist function is de ned by equation (3.38).
The dispersioncurvescorrespnding to the mis t threshold of oneare plotted in gure 6.11(c).
Dispersioncurve inversionleadsto a good de nition of the Vs pro le for the rst 25 m. Below
this depth, a large range of velocity valuesmay explain the measureddispersioncurve, due to
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the lack of information at low frequency V, pro le is very poorly constrainedby the inversion,
as 'V, valuesin the layers have very little in uence on the dispersion curve for high Poisson's
ratio values(section 3.1.8).
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Figure 6.11: Resultsfrom inversion of the dispersion curve obtained with the frequency-wavenumber method.
(@) Vp, (b) Vs of generatedmodels and (c) corresponding dispersion curves. The dots and error bars represert
the experimental dispersion curvesto which the calculated dispersion curvesare compared. The black lines of
gures (a) and (b) are the velocity pro les of the true model.

6.1.4 High resolution metho d

For the three arrays A, B, and C, the dispersion curves have beencalculated by searding the
maximum of the high-resolutionfrequencywavenumber estimator de ned by Capon (1969)and
Ohrnbergeret al. (2004a). The estimator dependsupon the crossspectral matrix averagedover
the 6 minutes of available signals. The resultsare shovn in gures 6.12(a)to 6.12(c), for arrays

A, B, and C, respectively. The limits Ky, and

Array name | Kmin  Kmax fmin fmax  Kmax=2 validated for the f-k method are shavn
A 0.069 { 3.9 15.0 in grey Theoretically, the resolving power of
B 0.023 0.46 2.4 14.2 the high-resolutionmethod shouldbe better than
C 0.023 022 24 6.9 the f-k method, and estimates of velocity may

be reliable even outside those restrictive limits.
From the obsenation of the stability of the high-
resolution results and the comparisonwith the

Table 6.3: For ead array, the minimum and maxi-
mum wavenumbersdeducedfrom the comparisonof

the high resolution results to the theoretical disper- . ] ]
sion curve (rad/m). Also are given the minimum theoretical dispersion curve, we de ne apparen

and maximum frequenciescorresponding to those limits of the high-resolution valid for this partic-
wavenumbers (Hz). ular case(table 6.3). This task is not possiblefor

areal experimert. From a careful examination of
gures 6.9and 6.12,the high resolution method providescorrectanswersbelow K, , extending
the frequencyrange by appraximately 0.5 Hz. The poor resolution of array A between6 and
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9 Hz is not signi cantly improved by the high resolution approad. At high frequency array
B gives nearly perfect results up to its knyax, in cortrast with array C which shows a lot of
instabilities above k. =2. After selectingthe points betweenthe validity curves, an average
dispersioncurve is calculatedto feedthe inversionalgorithm.
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Figure 6.12: Results of the high resolution frequency-wavenumber method applied to arrays A (a), B (b)
and C (c). The grey exponertial curves are the minimum and half maximum wavenumber limits deduced
from theoretical array response. The black lines with dots obtained from computations are comparedto the
theoretical dispersion curves(thin plain lines).
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Figure 6.13: Results from inversion of the dispersion curve obtained with the high-resolution frequency
waverumber method. (a) Vp, (b) Vs of generated models and (c) corresponding dispersion curves. The dots
represen the experimental dispersion curvesto which the calculated dispersion curvesare compared. The black
lines of gures (a) and (b) are the velocity pro les of the true model.

We performedexactly the sameinversionprocessessfor the f-k results ( gure 6.13. As we
do not have error estimation on the dispersioncurve, the model selectionis basedon the mis t
threshold (0.075) for which the dispersion curve uncertainty includesthe data scattering. As
for f-k method, the Vs pro le up to the major impedancecortrast can be determined. V, over
the whole column and Vs belowv 25 m are not de ned by analysingthe vertical componert of
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the ambient vibrations. The slightly extendedfrequencyrange comparedto f-k method does
not induce a signi cant di erence in the inverted Vs pro les.

6.1.5 Spatial auto-correlation metho d

The signals simulated for the three arrays A, B and C are analysedusing the spatial auto-
correlation method descrikedin section5.2. The azimuths and the distancesbetweenall couples
of stationsareshavn in gure 6.15. The pairs of grey circlesare the selectedrings for the spatial
auto-correlation computation. Distancesare summarizedin table 6.4.

Array name | Min. radius Max. radius Number of pairs
A 7.8 9.4 9
A 12.1 13.2 9
A 15.3 17.0 9
A 21.2 22.5 9
A 24.4 25.3 9
B 12.5 18.0 6
B 22.0 26.3 9
B 34.7 43.3 12
B 49.1 63.8 12
B 73.8 87.3 6
C 335 35.0 9
C 48.4 54 9
C 63.9 65.1 9
C 85.6 87.3 9
C 97.5 99.4 9

Table 6.4: Distance limits for the selectedrings for arrays A, B and C. The last column is the number of
station couplesincluded in ead ring. Distancesare expressedn metres.

As in the f-k method (section 6.1.3), the choice of the window length for calculating the
auto-correlationsis crucial. An exampleof its in uence is presened hereafter. The average
auto-correlation ratios are calculated with equation 1.11 for pairs of stations separated by
distancesbetween 30 and 40 m. In gure 6.14, the auto-correlation curves are plotted for
various window lengths, courted in number of cyclesof the certral consideredfrequency(! o):
10, 25 and 50 (from light to dark grey, respectively). For the three curves,the averagevalues
are closeto the true auto-correlation curve (black thick line) in the range3.5to 5.5Hz. Below
3.5 Hz, the 10 cycle auto-correlation curve deviatesfrom the correct function, while the two
other curves(25 and 50 cycles)are closeto it for frequencyaslow as2.5Hz. This discrepancy
for short windows is probably due to a lack of sourceazimuth coverage(Asten et al. 2004),
as the number of acting random sourcesis inversely proportional to the consideredduration.
Another explanation might be that the spectral estimatesare more in uenced by unavoidable
sidee ects generatedby cutting signalsinto time windows. Also, long time window curvesare
smaother than short onesand exhibit smaller standard deviations ( gure 6.14). During this
thesis, the 25 cycle time windows are kept for the computation of auto-correlation curves.
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Figure 6.14: Inuence of time window lengths on
auto-correlation curves (averageand standard devi-
ations): 10 cycles (light grey), 25 cycles (medium
grey) and 50 cycles(dark grey). The thick black line
represern the theoretical auto-correlation curve.

A total of 15 auto-correlation ratio curves (v e by array) are calculated for time windows
of 25 cycles. Only one curve per array is shovn in gure 6.16 with grey dots and grey errors
bars. The consistencyof all 15 auto-correlation curvesis cheded on dispersioncurvesin gure
6.17(a)to 6.17(c), for arrays A to C, respectively.

The fteen auto-correlation curveswith the selectedsamplesareinverted with v e indepen-
dent runs keepingthe sameparameterization as for the two precedingmethods. The results
are shavn in gure 6.18. Only three auto-correlation curves amongthe fteen are shown in
gure 6.18(d) to 6.18(f). A good agreemen is found betweenthe calculated curves and the
obsened auto-correlations (black dots and their error bars) even belov 2 Hz. The theoreti-
cal dispersion curve is drawn for comparisonin gure 6.18(c). The auto-correlation method
correctly retrievesthe dispersion curve for all frequenciesabove 2.5 Hz. For lower frequency
a systematic bias is obsened in gure 6.18(c). Comparing gures 6.11(b) and 6.13(b), the
inversion of auto-correlation o ers a little more constrairt on Vs at the baseof the sedimen
layer. V, over the whole column and Vs below the major impedancecortrast is not resoled as
for the other methods.

6.1.6 Discussion and Conclusions

Three processingmethods have beentested to retrieve the dispersion properties (dispersion
curves or auto-correlation curves) on a two-layer model from simulated noisearray measure-
merts: the f-k method, the high-resolutionf-k method and the spectral auto-correlation tech-
nique. Only the vertical componerts are processedand the dispersion (or auto-correlation)
curvesare inverted to obtain the Vs prole. The rst conclusionis that seeral array apertures
have to be usedto construct the dispersion (auto-correlation) curvesin the appropriate fre-
guencyrange. From the inverted velocity pro le point of view, all three methods have almost
the samee ciency for this synthetic case.The Vs pro le is correctly retrieved down to about
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Figure 6.18: Inversion of the selected15 auto-correlation curves. Only three of them are preseried here. (a)
Vp, (b) Vs pro les of generatedmodels. The black lines of gures are the velocity pro les of the true model. (c)
The dispersion curvescorresponding to model of gures (a) and (b). The thin lines are the theoretical dispersion
curves,not usedduring inversion. (d) to (e) One auto-correlation curve per array, A, B and C respectively. The
black dots and their errors bars are the auto-correlation data points to be t during inversion.
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25 m which is the depth of the interface.

A special attention is paid to the limited reliability speci c to ead array. Basedon the
knowledgeof the true dispersioncurve, we concludethat the wave number limits deducedfrom
the theoretical array responseare consistet with the capabilities of the f-k method. Outside
those limits, the calculated curves may exhibit strong bias. The high-resolution f-k method
is sometimesmore e cient than the f-k approad in de ning the dispersion curve but no
de nitiv e and systematicimprovemert may be found. Like the auto-correlation method, the
high-resolution method can be seenas complemerary technique con rming the results of the
f-k method.

No method is able to retrieve the velocity below the interface at 25 m. This limited pene-
tration depth is a direct consequencef the high-pass Itering e ect of the ground structure on
the vertical componert. This characteristic is a strong limitation of the method for assessing
the local ampli cation factor in earthquake engineering,which dependsupon the value of the
velocity cortrast.
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Figure 6.19: Inversionof Love and Rayleigh fundamertal modesfor perfect dispersion curves. (a) Vs models.
(b) Calculated Love dispersioncurves. (c) Calculated Rayleigh dispersion curves. The black dots are the target
Rayleigh dispersion curves. The grey dots are the target Love dispersion curve.

Further improvemen of the technique should consider horizortal componerts which are
richer in low frequencywavesthan the vertical ones( gure 6.2). This alternative is testedin
section 5.1.2 where the Love dispersion curve measuredat low frequency combined with the
Rayleigh dispersioncurve allows an extertion of the reliability of the inversiontowards deeper
layers. We compute the theoretical Love and Rayleigh dispersion curvesfor the ground model
usedin simulations. The Rayleigh dispersion curve is cut between?2.5 and 8.5 Hz as obsened
in gure 6.2 while the Love dispersion curve is supposedto be known only between 1.5 and
2.5Hz, in the vicinity of the fundamenal resonancerequency The theoretical Love samples
used for the inversion are represeted with grey dots, and the Rayleigh sampleswith black
dotsin gures 6.19(b) and 6.19(c). Thesetwo curvesare jointly inverted with v e independert
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runs and the results are shavn in gure 6.19. Only the Vs pro les of the generatedmodels are
showvn in gure 6.19(a). The correspnding calculated dispersioncurve for Love and Rayleigh
areshovnin gure 6.19(b)and 6.19(c),respectively. Comparedto the Rayleigh wave inversions,
the conbined Love and Rayleigh wave inversioncorrectly retrievesthe V; value below the main
velocity cortrast at 25m. This result stressesut the interest of developing techniquesof Love
wave extraction from noisearray measuremets.

6.2 Liege site

For a simulated wave eld, the theoretical model is perfectly known and the inversionreliability
is easily chedked by comparingthe results to the known velocity structure. On real sites, the
results have to be validated by external geologicalor geotetinical information like existing
borehole descriptions, cone penetration test (CPT) or corvertional geoplysical prospecting
data. Actually, those data are also a ected by uncertainties which must be consideredin the
validation process.This sectioncomparesthe results of the three processingechniquesapplied
to array vibration measuremets in the city of Liege,Belgium. The reliability of the techniques
is evaluated using newly acquired seismicrefraction data and existing boreholedata. Signals
generatedby hammer shots were recordedon vertical sensorsfor measuringthe rst P-wave
arrivals and the apparen velocity of the triggered surfacewaves. A special careis paid to the
uncertairties of the interpretation of usualrefraction data. Within an urban context, the signal
to noiseratio is relatively low, and the picking of the P-wave rst arrivals can be ambiguous.
For eat picked time, an error value is estimated. The traveltime-distance curves are then
inverted using the neighbourhood algorithm (Sambridge 1999a)to obtain one-dimensionalV,
pro les. This method o ers the advantage over other commonapproadesto take into accourt
the picking uncertainties. The arti cially triggered surfacewaves were processedo give the
high frequencypart of the dispersion curve (Stokoe et al. 1989,Malagnini et al. 1995), which
might be uncertainly deducedfrom the processingof microtremor arrays (seebelow). The
overlapping frequencyrangesof ambient vibrations and triggered waveso er the opportunity
to validate the array results. Though only the vertical componerts of the sensorsare usedfor
the array processingwe measuredhe three componerts of the particle motion. The horizortal
to vertical spectral ratios (H/V method, Bard 1998) were computed for all the sensors. The
frequencyof the peakof the H/V curve is known to be closeto the resonancdrequencyof the
site (Bonnefoy 2004), giving an additional constrairt to the Vs pro le.

6.2.1 The test site

The experimertal site is situated in the alluvial plain of Meuseriver, near the certre of Liege
city, Belgium (gure 6.20). At this location, the valley is about one kilometre wide and the
river divides into two branches (the main stream and its derivation), delineating a lenticular
island of 1.5 km long and 500 m large. The test site, which is a at and unbuilt zone with
a triangular shape of 200 m side, is located at the North-East end of the island ( gure 6.20).
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It is surroundedby se\eral streetsand one main road on its South-East side along the Meuse
derivation (gure 6.20).

The geologystructure belov the city certre is made of alluvial layers overlying a shaly
Paleozoicbhasemen The layer geometry and properties are well documerted on geotenical
maps (Fagnoul 1975) gathering the existing information (mainly Cone Penetration Testsand
borehole data). Twelve boreholeswere drilled
to the bedrock in the neighbourhood of the test
site. They are reported in gure 6.20and their
logs are summarizedin table 6.6. Three types
of soft sedimens are encounered from top to
bottom: bad lls of varying thickness(from 2 to
8 m), uvial silts or clays of irregular distribu-
tion (down to 6 m depth, sometimescompletely
replacedby bad lls), and nally afewmetresof

City

sand and/or gravel overlying the bedrock. The
top of the bedrock was found at a depth rang-
ing from 10.5to 13 m. It is madeof Wesphalian
shalesand sandstonesvith numerouscoal veins,
A __| intensively exploited during the XX certury.

0 200 400 600 The bedrock depth reported by the borehole
Figure 6.20: Local map of the test site. Th grey descriptionsmay not corresgond to a sharp in-
squaresrepresen the locations of boreholes. The Creaseof the seismicvelccity, due to the pres-
Cone Penetration Test is marked by a black cross enceof a few metre thick weatheredrock layer
inside a grey square. The North-South and East-  jongmansand Campillo (1990). In the absence
WestP Sy pro les are showvn with thin black lines. of speci ¢ information about the seismicproper-
ties at the test site, we conductedactive seismic
prospecting along two pro les orierted North-South and East-West (see gure 6.27 for loca-
tion). Along ead line weredeployed twerty-four 4.5Hz vertical sensorswith a spacingof 2.5m
and the waveswere generatedwith a hammer and an explosive source. An exampleof signals
generatedby an explosive sourceis given in gure 6.21. P-wave arrival times and Rayleigh

waves are clearly visible and were inverted to obtain V, and Vs pro les, respectively.

Refraction

A method basedon the neighbourhood algorithm descriked in section 1.2.1is usedto invert
real data. For our particular real case,the geologicalstructure evincedfrom the boreholesis
roughly one-dimensionalnd the data uncertairties are relatively high due to the bad signalto
noiseratio. Thus, we limit our inversionto velocity structures without dipping interfaces.
The two refraction lines are analysedseparatelyusing the method descritedin section1.2.1.
The time-distance curvesare shovn in gures 6.22and 6.23 (plots labelled (e) to (h)). From
their shapes, it is obvious that a model with at least three layers has to be used for the
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Borehole Badklls Silts or Clay Sandand gravel Bed-rock Water level
B248 0.0t0 2.7 2.7t0 6.0 6.0to 10.0 - -
B251 - 0.0to 3.0 3.0to 12.0 12.0 -
B252 - 0.0to 2.5 2.5to0 10.6 10.6 -
B253 0.0to 7.5 - 7.5t0 11.3 11.3 -
B254 0.0to 5.5 - 5.5t0 10.3 10.3 -
B255 0.0to 4.5 - 45t0 10.3 11.3 -
B294 0.0to 3.6 3.6t06.2 6.2to 13.0 13.0 -
B295 0.0t0 3.9 3.9to 4.6 4.6t0 12.6 12.6 3.9
B296 0.0to 2.0 2.0to4.4 4.6t0 12.7 12.7 3.5
B297 - 0.0to 2.8 2.8t0 11.0 11.0 2.8
B298 0.0t0o 2.7 2.7t04.9 49to0 11.3 11.3 -
B299 0.0to 8.5 - 8.5to 13.0 13.0 -

Table 6.6: Borehole descriptions around the site (from geotednical database). From B294 to B297, the silty
layer is replaced by soft blue clays. Only B248 is included in the area investigated by arrays and geoptysical

experiments. Depths measuredfrom surfaceare in metres.

\
0.2s

Time

I
04s

\
0.6s

Figure 6.21: Recordedsignalsfor East-West P Sy refraction line, West source. First P-wave are visible
on the left with small amplitudes. Surfacewavesdevelop between0.1 and 0.4 secondsand constitute the most
energeticpart of the signal.
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Figure 6.22: Refraction results obtained with travel time NA inversion for prole East-West. (a) to (d)
Vp pro les obtained by inversion for South, Certral towards South, Certral towards North, and North shots,
respectively. (e) and (h) corresponding calculated traveltime-distance curves (in the sameorder). The black
dots and the error bars are the experimental times picked on recorded signals.
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Figure 6.23: Refraction results obtained with travel time NA inversionfor pro le North-South. (a) to (d) V,
pro les obtained by inversionfor West, Central towardsWest, Central towards East, and East shots, respectively.
(e) and (h) corresponding calculated traveltime-distance curves (in the sameorder). The black dots and the
error bars are the experimental times picked on recorded signals.
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data inversion. The water table is a few metre deep (between2.5 and 3.9 m from the closest
boreholes)in the alluvial layers and the velocity in the intermediate layer was constrained
between1400and 1600 m/s. Five parameters(three V, and two thicknessvalues)areinverted.
The resultsareshowvn in gures 6.22and 6.23for linesEast-Westand North-South, respectively.
The generatedground models are preserted in gures (a) to (d) and the comparisonof the
calculatedtraveltimes with the experimenrtal curvesis shavn in gures (e) to (h). The lowest
mis t found is around 0.2 and a commongrey scalefor the mist is adjusted to all cases.A
threshold of one is chosenfor the mist to selectall models with traveltime-distance curve
inside the experimertal uncertainties.

The feature commonto all pro les is the V, increaseto around 1500 m/s at about four
metresdeep. It is consisten with the obsened level of the river around the site (bank walls)
and with the water table in the holes. Someslight variations may be obsened betweenthe
di erent shots for the super cial layer velocity: for the best model of ead shot, V, ranges
from 275to 350m/s, and from 200to 430 m/s consideringthe completeuncertainty interval.
The velocity in the basemen is poorly constrained,with a range between2000and 4000m/s.
Howewer, from the extremity shots (gures 6.22(d), 6.23(a) and 6.23(d)), the velocity belowv
15 m is probably around 3000m/s. There is no evidenceof a well de ned cortrast for the
basemety but a transition zonelocated between7 and 15 m is obsened for all shots. This
intermediate zonecorrespndsto the bottom of the alluvial deposits and to the weatheredrock
layer which canread a thicknessof v e metres(Jongmansand Campillo 1990).

Rayleigh wave pro cessing

During the samecampaign, the geophonelay-

out was used to record articially generated 100
Rayleigh waves. Sourceswere placed with an 50?
o set of 20m in orderto avoid near- eld e ects 10;
on the closestreceiwers. Two kinds of sources § 5
were used: hammer shotslike in the preceding é ]
sectionand explosiwe loads(100gr of bladk pow- < 1-
der) buried at about 0.8 m deep. Eight shots 0.5
wererecorded,correspndingto the two pro les, 7
the two sourcetypes,and the two extremities of 4 é é 1‘0 2‘0 4‘0 6‘0 80

pro les. The averagesand the standard devia- Frequency (Hz)
tions of the frequencyspectra obsenred for the

9 yspe ] ) Figure 6.24: Triggered surfacewavesalongP Sy
two sourcesare comparedto the ambiert noise pro les North-South and East-West. Averagespectra
level in gure 6.24. The amplitude for the ex- (plain lines) and standard deviations (dashed lines)
plosive shotsis about 25 times greaterthan the for 24receiversrecordingablack powder shot situated
amplitude for the hammer shots. The energy at 20m from the rst sensor(thick black lines) and a
| | of th mbiert vibrations i hiah that hammer shot (grey lines) and the ambient vibrations
evel of the ambie ations S_SO 9 ? recordedwith the samesensors(thin black lines).
the results from hammer shots might be valid
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Figure 6.25: TriggeredsurfacewavesalongP Sy proles North-South and East-West. (a) to (d) Frequency-
wavenumber senblance maps for the di erent shots: (a) East explosive shot and (b) East hammer shot on EW
pro le, (c) South explosive shotand (d) South hammershot on NS pro le. (e) Picking of the maximum apparert
velocity for all sourcelocations and types (8 curves,thin lines for hammersand thick lines for explosives).

only inside a narrow frequencyband between15and 25 Hz. On the other hand, explosiwe shots
are far above the ambient noisefor all frequenciesbetween6 and 50 Hz.

For eat shot and for all frequencybands, a frequency-vaverumber senblanceis calculated
for the linear arrays of sensors. The technique is exactly the sameas for the processingof
microtremor arrays (section 1.2.3), exceptthat only one time window is processed.The ap-
parert velocity is deducedfor ead frequencyband. The calculated senblance plots are shovn
for two shot positionsin gures 6.25(a)to 6.25(d). Figures(a) and (c) are for explosiwe shots
and gures (b) and (d) for hammer shots. The consistencyof the measureddispersion curve
(maximum of senblance) cheded for all eight sourcesn gure 6.25(e)is remarkable. All plots
are cut between8 and 40 Hz which is inside the valid interval for explosive shots but, amaz-
ingly, outside the hammer shot validity range. One reasoncould be that the ambient noiseis
predominarily made of surfacewaves,leadingto a global coherencyof the senblancefunction.
Below 10Hz, for both explosive and hammershots,the uncertainties over the velocity estimates
drastically increase( gures 6.25(a)to 6.25(d)).

The Rayleigh dispersioncurve is not directly inverted hereto obtain the Vs or V, pro le. It
is usedin the next sections,comparingto array results.

S, refraction

One Sy refraction pro le hasbeenadieved in the certre of the site with two shot points at
eat extremity. The S-wave arrivals are picked with an estimation of the error, consideringall
directions for ead shot. The obsened traveltime-distance curve are shovn in gures 6.26(c)
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and 6.26(d) by black dots and their asseiated error bars. From their shapes, it is obvious
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Figure 6.26: Refraction results obtained with travel time NA inversionfor Sy prole. (a) and (b) Vs pro les
obtained by inversionfor the West and East shots, respectively. (c) and (d) corresponding calculated traveltime-
distance curves (in the sameorder). The black dots and the error bars are the experimental times picked on
recorded signals.

that a two-layer model is su cient. The neighbourhood algorithm is then launched with three
parameters (Vs of ead layer and thicknessof rst layer). The results are shovn in gures
6.26(a)to 6.26(d). The generatedground models are presetied in gures (a) and (b) and the
comparisonof the calculatedtraveltime-distancecurveswith the experimertal curvesis shovn
in gures (c) to (d). The lowest mist found is around 0.2, similar for both shots. Vs at the
surfaceis between 100 and 400 m/s consideringall models. For the best models, the velocity
is between260and 290m/s. Between0 and 10 m, Vs increasesup to 500 m/s. The maximum
possiblevelocity at 10 m is around 1000m/s.

6.2.2 Am bient vibrations recording

Ambient vibrations were measuredwith two sets of sensors: 10 three-compnert Lennartz
sensorqresonancerequencyof 0.2 Hz) and 22 vertical 4.5 Hz geophonesisedfor the P Sy
experimenrts. For the rst array (A), 22 4.5 Hz vertical sensorswere set up 5 m apart on a
17.5 m radius circle (gure 6.27(a)). The hole in the circle of gure 6.27(a) comesfrom a
defective receiver, resulting in 21 available signals. The ten Lennartz sensorswere set up with
three distinct geometries(Arrays B to D, shavn on gures 6.27(b) to 6.27(d), respectively).
The geometry of arrays B and D was made of one certral sensorand three triangles rotated
by 40, with maximum apertures of 40 and 50 m, respectively. Array C hasa certral sensor
and nine sensorgdistributed on a circle with a radius of 40 m. All the sensorpositions were
measuredwith a theodolite, expecting a certimetric accuracy

The horizontal to vertical spectra are calculatedfor all individual three-compnert signals.
Typical spectra are shavn for the certral station in gures 6.28(a)to 6.28(c). The plain line
is the averageof all time windows while the dashedlines are drawn at one standard deviation
(geometrical average). The total recording length is 6 hours. Statistics are calculated over
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Figure 6.28: Spectral curvesof the certral station
of array A, B and C. The plain line is the averageand
the dashedlines are located at one standard devia-

tion.

(@) Amplitude spectrum of the vertical com-

ponert. (b) Amplitude spectrum of one horizontal
componert. (c) Spectral ratio Horizontal to Vertical

(HIV).

Grey bands indicate the average and stan-

dard deviation of the frequencypeak valuesobsened
for ead individual time window.

3690time windows of v e secondsad. The vertical and an horizontal componert spectra are
preserted in gures 6.28(a) and 6.28(b), respectively. A clear high pass Iter e ect is obsened
for the vertical componert as demonstratedby Scerbaum et al. (2003) for a syrthetic case.

The ratio of the vertical to the horizortal averagecomponert is shavn in gure 6.28(c)and it
exhibits a well deweloped peak at 5.3 Hz. The results are quite similar for the other stations,
with a meanfrequencyvarying from 4.8to 5.3 Hz with a standard deviation of about 0.5 Hz.
The averagevalue of the peakfrequencyis 5.17 0.57Hz (29015time windows of v e seconds)
over the whole area. The small spatial variation of the resonancdrequencyis supporting the
assumptionof a one-dimensionaktructure.

6.2.3 Frequency-w avenumber metho d

As showvn in section 6.1, the computation of the theoretical frequency-vaverumber array re-
sponseis a mandatory tool for assessinghe reliable range of the dispersion curve. These
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theoretical responsesare calculatedfor arrays A to D in gures 6.29(a)to 6.29(d). The resolu-
tion and aliasing limits (section1.1.1)de ned from plots (a) to (d) arereported in table 6.7.

N

0.6

] (@) ] (b)
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0.2 il D 0.024 0.11
02 1 -0.2
-0.4 e R R Table 6.7: Wavenumber limits (rad/m) deduced
-0.4 -02 0.0 0.2 0.4 02 00 02 from theoretical array responses( gure 6.29).

Figure 6.29: Theoretical frequency-wavenumber
response calculated for Arrays A to D (gures (a)
to (d), respectively.

For array A, the signalswere recordedwith 16 short windows of four minutes. For arrays
B to D, cortinuous signals are available during 1 hour, 46 minutes, and 1 hour 20 minutes,
respectively. For ead array, vertical componerts are processedfrom 2 to 20 Hz using the
method descriked in section6.1. The apparert velocity is estimated from time windows with
a length of 50 cycles,with an overlap of 50% with their neighbours. The statistical results
(velocities of the senblance peaks) in the velocity-frequency plane are presened with one
histogram per frequency band in gures 6.30(a) to 6.30(d) for arrays A to D, respectively.
The three curves indicate the waverumber limits (k equal to a constart) deducedfrom the
theoretical array response: resolution (plain lines), half of the aliasing (dotted lines), and
aliasing waverumber (dashedlines). For arrays A and B, the velocity estimate is remarkably
stable againsttime within the waverumber limits. According to the resolution criterion (table
6.7) the velocity valuesmay be biasedbelowv 6 Hz for those two arrays. Indeed, the average
velocity valuesobsened at 5 Hz for arrays B and A (& 1600m/s) are higher than the velocity
measuredby array C ( 1200m/s) which hasa correct responseat this frequency Moreover,
the uncertainties belov 6 Hz increasefor all arrays, even within the valid waverumber range of
array C. This is probably due to the energydrop on the vertical componert at the vicinity of
and below the resonancdrequency(around 5.2 Hz from H/V results).

Figure 6.31 shavs the average dispersion curve (black curve and error bars) calculated
from arrays A to D, keepingthe data betweenthe resolution and half the aliasing limits. On
the samegraph is plotted in grey the averagedispersion curve calculated from the triggered
surfacewaves. An indisputable agreemen is found between 12 and 20 Hz. In this range,
the curve di erences all fall inside the respective standard deviations. Between8 and 12 Hz,
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Figure 6.31: Averageand standard deviations (vertical bars) of apparernt dispersion curve from arrays A to D
(black dots). The grey dots represen the averagedispersion curve calculated from gure 6.25(e) for triggered

surfacewaves.
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the array velocity is slightly higher than the active experimert results which are a ected by a
relatively high uncertainty ( gure 6.25). The array dispersioncurve is then consideredin the
low frequencyrange and extendedfrom 20 to 40 Hz using the active experiment results. The
global dispersioncurve is shovn with black dots in gure 6.32(c).

Beforeinversion, the rangesof the sewven parameters(V, and Vs in the three layers and the
thicknessesof the two uppermost layers) are de ned in table 6.8 accordingto the geometry
and characteristics discussedn section6.2.1 on page 125. This parameterisationwas usedto
generate50,000modelsby v e independert runs with the neighbourhood algorithm. Of these,
the 17,500models found with a mist lessthan 1 are plotted in gures 6.32(a)and (b) with a
mist grey scale. The lowest mist obtainedis 0.44. The correspnding dispersion curves are
showvn in gure 6.32(c)with the samegrey scale.

Layer  Bottom depth Vp Vs/ Vp Density 'V, variation
Sedimerns 2to 7m 200to 430 0.01to 0.707 2t/m3 {
Sedimers 7to 15m 1400to 1600  0.01to 0.707 2t/m3 {
Half-space { 2000to 5000m/s 0.01to 0.707 2t/m3 {

Table 6.8: Parameters and their prior interval for spectral curve inversions (dispersion curves and auto-
correlation curves).
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Figure 6.32: Inversion of the averagedispersion curve of gure 6.31. (a) V, proles and (b) Vs proles of the
generatedmodels. (c) The corresponding dispersion curves (grey scale). The obsened curve of gure 6.31is
shown by black dots and error bars.

From gure 6.32(b), the Vs pro le is well constrainedand almost constart on the rst six
metres,with a slight increasefrom 220m/s at the surfaceto 250m/s at 6 m. Below this depth,
the uncertairties increasedramatically. The depth of the major velocity cortrast is between
10 and 15 m with a basalshearwave velocity between1000and 3000m/s. The relatively high
frequencyconent of the Rayleigh waves and the uncertainty on the dispersion curve do not
allow a more precisede nition of the depth and of the shearwave velocity belov 8 m. The
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V, pro le is little constrainedby the dispersion curve inversion ( gure 6.32(a)) and does not
provide additional information above 8 m, whencomparingto the refraction results( gures 6.22
and 6.23).

The ellipticity and the S, transfer function have beencalculatedfor the best model. They
exhibit a single peak around 5.2 Hz which correspndsto the H/V measuremets. Howe\er,
for the ensenble of modelsshown in gure 6.32,the peakof the theoretical ellipticit y is widely
distributed. Consequetly, accordingto the H/V criterion, somemodels may be discarded. A
joined inversiondescribked in section5.3 is henceperformedwith the sameparameterizationas
in gure 6.32(table (6.8)). The weighs for the dispersion curve and the ellipticity frequency
are 0.5. The results are preserted in gure 6.33. The lowest mist obtained is 0.23 which is
approximately half of the mist in gure 6.32, meaningthat the frequencyof the H/V peakis
nearly perfectly t, becausdhe minimum mist that canbe adchieved with the parameterization
of table 6.8 is around 0.44.
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Figure 6.33: Inversion of the averagedispersion curve of gure 6.31 and ellipticit y peak. (a) V, pro les and
(b) Vs proles of the generatedmodels. (c) The corresponding dispersion curves (grey scale). The obsened
curve of gure 6.31is shawvn by black dots and error bars. (d) Calculated ellipticities (grey scale). The vertical
black lines delineate the target frequency of the peak (5.17 Hz 0.57 Hz). The thin black curve is the average
H/V ratio obsened for the certral station (gure 6.28(c)).

Comparing gures 6.32(b)and 6.33(b), the joined inversionwith the ellipticit y clearly results
in a better de ned depth of the basemenh It isimpossibleto nd amodelthat ts the frequency
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of the H/V peakwith a depth above 9 m. The highestlimit of the depth interval is alsoslightly
reduced,probably around 14 m.

6.2.4 High resolution metho d

The high resolution frequency-vaverumber method is used on the same signals as the f-k
method. The results are showvn in gures 6.34(a) to 6.34(d) for array A to D, respectively.
For array A, 16 signal windows were processedseparately providing 16 velocity estimatesby
frequencyband ( gure 6.34(a))while only onevelocity estimateis available for arrays B and C.
For array D, two windows are available and two velocity estimatesare determinedby frequency
band ( gure 6.34(d)). The averagedispersioncurve obtained with the f-k method is plotted for
comparison,as well asthe waverumber limits deducedfrom the theoretical array responses.
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Figure 6.34: Results of the high resolution frequency-wavenumber method applied to arrays A to D (gures
(a) to (d), respectively), represeried with black dots. The dispersion curve obsened for frequency-wavenumber
method is plotted for comparisonin grey. Wavenumber limits deducedfor the f-k method are also showvn with
the samelegendasin gure 6.30.

For syrthetic signals(section 6.1), the high resolution method results were consistem be-
tweenead other and agreedwith the onesobtainedwith the f-k method and even gave a better
estimate of the true dispersioncurve for somefrequencies.For this real case,strong discrepan-
ciesare obsened betweenthe di erent curvesfor the high resolution method and betweenthe
two methods for somefrequenciesgven in the theoretical validity range. For instance,the ve-
locity value measuredby array A at 6.5Hz (around 500m/s) with the high resolutionmethod is
lower than the one measuredwith the samemethod by the other arrays (about 700m/s). This
last value is consistem with the results of the f-k method. Also an abnormal jump on the high
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resolution curve is obsened ( gure 6.34(d), array D) around 6 Hz, while the curve obtained
by f-k method exhibits a regular decreasewith frequency The high resolution results for array
A at high frequencyseemto indicate the existenceof higher modes. The uncertainty on these
resultsis obviously too high to usethis information for inversionpurposes.As a conclusion,the
high resolution method appearsto be unable to obtain a reliable velocity estimate belov 6 Hz
in this case.Over 6 Hz, a good agreemen is reated betweenthe high resolution and the f-k
methods in the valid frequencyrange of the arrays. The f-k method then appearsto be more
robust in the whole frequencyrange, with an increaseof the uncertainty in the low frequency
range.

6.2.5 Spatial auto-correlation metho d

This method is applied to the four arrays but only array A is shavn here. Arrays B, C, and D
are not showvn here becausethe obtained auto-correlation curves are not consistem according
to the test descrited in section 5.2.3. The array geometriesare probably not well adapted
for the auto-correlation method. For non circular arrays, the spatial auto-correlation method
requiresthe de nition of rings (Bettig et al. 2001) and the ten rings chosenfor array A are
showvn in gure 6.36. The auto-correlation curves are calculated using the method descriked
in section6.1. Three of the ten auto-correlation curvesare presetted in gure 6.35(black and
grey dots). The consistencyof all 10 auto-correlation curvesis cheked in gure 6.37 with the
grid method descrikedin section5.2.3. From 5to 12 Hz, all rings are consistem with eat other
and a commondispersion curve is delineatedby the dashedlines and the wavernumber limits
(plain and dotted lines). The data outside of thoselimits are consideredasincoheren and are
discarded. They are marked with grey dots on the auto-correlation curvesof gure 6.35. The
data selectedrom the ten auto-correlationcurvesare inverted togetherwith the neighbourhood
algorithm as in section 6.1. Five runs are used with the same parameterization as for the
frequencywaverumber method (table 6.8). The Vs pro les are shovn in gure 6.38. The three
of the ten calculated auto-correlation curves are shovn in gures 6.38(d) to 6.38(f) with the
experimertal black dots and the error bars shavn in gure 6.35. The minimum mist found
is 0.65. This relatively high value is due to the residual inconsistenciedbetweenthe ten auto-
correlation curves. Above 8 Hz, both frequencywaverumber and auto-correlation methods give
the samedispersion curve. If we assumethat a mist of oneis a good threshold to selectall
modelswithin the experimertal uncertairties, this exampleshaovs that the nal Vs uncertainty
rangefor all depth above 8 m is larger for the auto-correlationmethod than for the waverumber
method. For frequenciesbelon 8 Hz, a huge gap is obsened betweenthe two methods, with
much lower velocity estimatesfor the auto-correlation results. Moreover, the experimertal
auto-correlation curves are not correctly t belov 6 Hz. In gure 6.38(f), the experimertal
points below 8 Hz are located on the left side of the calculated curves, which correspnd to
an increaseof the velocity and to a better agreemen with f-k methods. On the cortrary, in
gure 6.38(e), tting the experimertal points below 6 Hz would imply an even lower velocity.
The sametype of deviation is obsened for the high resolution method ( gure 6.34(a)). This
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Figure 6.38: Inversion of the selectedsamplesof 10 auto-correlation curvesfor array A. Only three of them
are preserted here. (a) V,, (b) Vs of generatedmodels and (c) corresponding dispersion curves. The dispersion
curve obsened for frequencywavenumber method is plotted for comparisonin grey. (d) to (e) Auto-correlation
curvesfor three rings with the obsened ones(black dots and error bars).
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di erence hasa strong in uence over the inversionasshovn by gure 6.38(b).

6.2.6 Conclusions

A shallov sedimemary structure (10 to 15 m) of alluvial sedimeis over a shaly bedrock is
investigated with ambient vibration arrays to derive the shear-vave velocity prole. Four
arrays with distinct geometriesare deployed on the site. Three array processingmethods are
usedto derive either the dispersion curve or the auto-correlation curves. These curves are
then inverted with the neighbourhood algorithm, which is well-suited to problemsa ected by
strong non-uniquenessAdditionally, information from boreholesclassicalrefraction and active
surfacewave experimerts are analysedto ched the validity of the array results.

Of the three processingechniques,only the f-k method provided coherem dispersioncurves
for the three arrays and proved to be the more robust. The results provided by the high reso-
lution technique globally agreewith the rst method but exhibit unexpected sharp variations
of the dispersion curve at somefrequencies. Finally, the auto-correlation technique was only
usablefor one array and appearedto be very sensitive to uncorrelatednoise.

The refraction results provide a V, pro le with its uncertairties. For the inversion of am-
bient vibrations, V, pro les are uniformly chosenwithin this uncertairty interval. With only
the vertical componert, a good de nition of Vs down to 8 or 10 m is achieved. Below, the
experimertal uncertairties are too great to obtain a correct estimation of the velocity. The in-
troduction of the H/V peakfrequencyasa supplemermary constrairnt improvesthe nal results
by reducingthe posterior uncertainty about the depth of the basemen

This exampleclearly demonstratesthat any singlemethod and any singlearray aperture is
not valid for a reliable determination of the Vs pro le. On the cortrary, we usedall available
methods to nd out the robust featuresand to discard the cortradictory results. The use of
the horizorntal componerts would probably improve the determination of the deeper structure.



Conclusions

In the framework of array measuremets of ambient vibrations, the objective of this thesiswasto
improve the inversionof dispersioncurvesin orderto retrieve the Vs pro le of agroundstructure.
The uncertairties in the determination of the dispersion curve generally lead to a problem
highly a ected by non-uniqueness.Direct searty methods, like the neighbourhood algorithm
consideredn this work, o er at leasttwo advantagesover classicallinearization approadies: the
whole parameter spaceis investigatedand prior information is easily introducedby restricting
the seart to particular regionsof the parameterspace.Howeer, thesemethods require a great
number of forward computations. Moreover, the calculation of theoretical dispersioncurvesis
donenumerically and classicalcodesneedto be tuned on a case-ly-basebasisto give the right
ansver. Consequetly, we deweloped a new optimized and reliable algorithm to calculate the
theoretical dispersion curve of any one-dimensionaimodel, including fundamertal and higher
modesof Rayleigh and Love waves. We alsoextendedthe capabilitiesof the tool to the inversion
of the auto-correlation curves.

The Rayleigh dispersioncurvesobsened on the vertical componerts are generallynot avail-
ableat low frequencydueto the high-passlter e ect of the ground structure, which drastically
reducesthe penetration depth of the method. A variety of strategieswere tested to overcome
this limitation. The cortribution of prior information about V,, about the depth of the major
cortrasts, and about the frequencyof the H/V peak were considered.No signi cant improve-
mert was found with only one of these types of additional constraints, but their conbined
e ects always help in a better de nition of the Vs pro le.

Con gurations with a greatnumber of layers,ten in our case shovedthat the non-uniqueness
of the problem dramatically increasesvhenlow velocity zonesare allowed in the ground model.
Howe\er, forbidding such model feature is not straightforward with the original neighbourhood
code. Seeral strategieswere deweloped which prove that this kind of prior information is of
prime importance. The lack of exibilit y with theseapproadesled usto revisethe neighbour-
hood algorithm itself. It wasre-written in C++ with the possibility of xing prior conditions
betweenparameters,like the oneinduced by Poisson'sratio or by the absenceof negative ve-
locity cortrast. This alternative o ers good perspectives, evertually for other purposes,but
intensive testing is still necessary

The horizorntal componerts are usually high-pass ltered at a lower frequency than the
vertical ones. If the dispersion curve of Love waves can be estimated, the joint inversion of
high frequency Rayleigh and low frequency Love dispersion curvesis a good alternative to
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investigate the deep part of the ground model. This is an interesting property that opens
perspectivestowards a better prediction of the site ampli cation from array measuremets.

The obsened dispersioncurves might follow the fundamertal (usual assumption)or any of
the higher modes. If the harmonic branchescan be correctly iderti ed, including all modesinto
the inversionslightly improvesthe nal results. It alsoprovidesa good way of con rming the
inversionresultsobtainedwith the fundamertal mode. However, for our test case the frequency
rangewherethe rst higher modeis likely to be obsened cortains redundart information with
the fundamertal mode. On the cortrary, we show that a misiderti cation of the obsened
modesintroducesbias in the results. An experimertal code is dewloped to seard all possible
solutions not requiring a preliminary and subjective iderti cation of the modes. Assumingthe
number of potential modes, we shav that only a few model classegeally t the data curve.
Prior information are still necessaryto selectthe appropriate family of models.

We tested the inversiontool for non-perfect dispersion curves estimated from microtremor
recordings, either syrthetic or real. Signal processingof array measuremets includes the
frequency-vaverumber, the high resolution frequency-vaverumber, and the auto-correlation
methods. Thesemethods provide a reliable dispersion curve over a limited waverumber range
which mainly dependsupon the array geometry Including biasedpart of the curvesinto the
inversionmight leadto incorrect results. Hence,strict rulesfor pre-processingnput curvesare
deweloped. We tested the relevanceof the limits deducedfrom the theoretical array response
which is ertirely calculatedwith the array geometry A good agreemenhis found betweenthem
and the range of the correct determination of the dispersioncurve.

Among the methods for processingthe raw recordings of ambient vibrations, the auto-
correlation method does not provide the dispersion curve in a direct way like the frequency-
waverumber methods. Classicalapproadesinvolve two inversion processesvhich are known
to be highly non-linear. We deeloped a one step inversionwith the neighbourhood algorithm.
Besidesthe simplicity, the advantage of this method is that the auto-correlation data uncer-
tainties are fully consideredduring the inversion. An original cortribution of this work is also
the de nition of a methodology for assessinghe valuable parts of the auto-correlation curves
to invert.

The alluvial plain of Meuseriver (Liege,Belgium) has beenchoosenfor the deployemen
of the array method due to its one-dimensionaktructure (shallow alluvial deposits overlying a
shalybed-rock) and dueto the available geotetnical data. Information from boreholesgclassical
refraction, active surfacewave experimerts, and from the H/V peak frequencywere analysed
to chedk the validity of the array results. Only the frequency-vaverumber method provided
consisten dispersion curves for all arrays and proved to be the most robust. The results of
the high resolution technique globally agreedwith the rst method but exhibit unexpected
sharp variations of the dispersion curve at some frequencies. Finally, the auto-correlation
technique was only usablefor onearray. Theselast two methods appearedto be very sensitive
to uncorrelatednoise. A reliable Vs pro le was obtained down to 10 m. The depth of the main
velocity cortrast is estimatedwith a relatively good precision(the depthsfound vary from 9 to
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14 m) but no information can be retrieved belov. This reinforcesthe interest of investigating
the three-componerts techniquesto retrieve the Love dispersioncurve.

{{{

During this thesis,we deweloped a collection of interpretation techniquesdewted to ambient
vibration measuremets. Prior information are necessaryto overcomethe non-uniquenessof
the dispersioncurve inversion. We provided the tool for integrating them in a rational way.

Se\eral promising improvemers have still to be studied and tested. The extraction of Love
dispersion curve from ambient vibrations is not as direct as the determination of Rayleigh
dispersioncurve from the vertical componert. Signal processingmethods have to be tested on
syrthetic and real experimerts to assesdhe real potentialities. The spatial auto-correlation
method applied on the three componerts of the recordingsalsoo ers a solution to characterize
the relative portions of Love and Rayleigh wavesin microtremors, which is a necessarystep for
understandingthe noisewave eld structure.

The conditional neighbourhood algorithm deweloped in this thesis takesinto accourt the
physical conditions between parameters, which is necessaryto avoid the low velocity zones
during inversion. This work proved that this kind of prior information is of prime importance.
Howe\er, this code still needsintensive testing.

The useof a resamplingof the ensenble of models(Sambridge 1999b)may provide objective
statistics that are not possiblewith the current mist basedapproad.

The joint inversion with refraction measuremets and a better recognition of the higher
modes by means of external information are also topics to study in order to improve the
velocity accuracy

All the preceding discussionfocalized on one-dimensionalmodels. Extension to three-
dimensional casesmight be consideredin the future with the current dewelopmen of nite
di erence codesto simulate the ambient vibrations. If the direct inversionis still not consid-
ered with thesecodes, currently available three-dimensionalsyrthetic wave elds will give the
opportunity of a better understandingof the noisepropertiesin sud cases.
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App endix A

Sub-determinan ts of R()

The solution of the equation of motion for Rayleigh modesimplies the computation of sub-
determinarts of matrix R(zo) (section3.1.4,equation (3.34)). In this appendix, we presen the
complete analytical expressionsof theseterms. For doing so, we de ne the following adimen-
sional real quartities:

hy, = fn=k (A.1)
ke = Kn=k (A.2)
SH = osiet )
- M if h, isreal. (A.3)
CH = 05(1+ e 2hfn)
SH =  sinCidnfin) )
fin if h, isimaginary. (A.4)
CH = cog idnfy)
)
K = ostelnt ° .
> 05— Q if k, isreal. (A.5)
CK = 05(1+ e 20k
SK = sin ( idnRn) )
Kn if k, isimaginary. (A.6)
CK = cog idnkn)
whered, = z, 1z, ; isthe thicknessof layer n.
n = 2k2:(| :\/pn)2 (A?)
a; = g 2,+1
A = hﬁkﬁ
ag = fta (A.8)
ay = 1 n
as = ﬁaz
expCorr = g findn Kndh (A.9)

145



146

APPENDIX A. SUB-DETERMINANTS OF R()

And we alsode ne the following two dimensionalquartities:

The sub-determinans of G, are detailed herebelow (Gjj ki = 0n

c, = 1=qg

G meansthat this componert is imaginary) :

G212
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IG 1214
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1G 2414

a3CHCK (a; + as)SHSK
C(CHSK h2SHCK)

(A.10)

: , Gisreal, i before

(as 1)expCorr

ico((al  2)(expCorr CHCK)+ (as  na2)SHSK)

iG 1414

c(k3CHSK  SHCK)
CG3(2CHCK + (1+ a)SHSK)
ci( 2k2CHSK &, SHCK)
CHCK

i(auSHCK + ,k2CHSK)
iG 1314

k2SH SK

G1224

ici((al ad)(a4  ,)(expCorr
i( \h23SHCH + a,CHSK)
expCorr + Gygo3

CHCK Gy

iG 1314

|G 1214

|G 1412

iG 1413

G1423

G1414

iG 1314

iG 1214

c1(a;CHSK  2h2SHCK)
h2SH SK

iIG1314

(A.11)

CHCK)+ (a4a1 nas)SHSK)



Tij Kkl = tnl

IG 2423
G424
G2434
Gas12
Gaa13

IG 3414

IG 3423
Gaaa

G3434

and from

147

- iG1413
- C':‘1313
= Gis
= (2 2a,CHCK + (a2+ 2a5)SHSK)
- G2412
- iG1412
- iG1412
- C':‘1312

- G122I.2

equation (3.31), T1214 and Ty2,3 are equal and imaginary. Using

equation (3.34) and de nition of G (equations(A.11)), it follows:

R1212(Zn
R1213(zZ,
R1214(z,
R1223(zZ,
R1224(z,

R1234(zn

1)
1)
1)
1)
1)
1)

T1212G1212 + (T1213G1312  2T12141G 1410 + T1224Go412  T1234G3412)=! ? (A.12)
! 2T1915G1213 + T1213CHCK  2T1214iG 1413 T1224Goa13 + T1234G2412

2 . - - -
P “T12120G 1214 + T12131G 1314 + T1214(2G1423 + €XpCorr)  T12241G 1413 + T12341G 1412

2 . - - -
P “T12120G 1214 + T12131G 1314 + T1214(2G1423 + €XpCorr)  T12241G 1413 + T12341G 1412

! 2T1015G1204 + T1213G1304  2T1214iG 1314 + T1204CH CK + T1234G1312

2 -
! T121261234 + TlZlSGlZZ4 2T1214|G 1214+ T122461213 + T123461212
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App endix B

Generating

Increasing velocity proles

As reported in section4.3.1, ensuring an increasingvelocity acrossa ground structure is nec-
essaryto retrieve information from the inversion of dispersion curves. Methods of parameteri-
zations to acdhiewve this requiremen are proposedin this appendix. The parameterization may

introduce prior information into the inversion by preferring someclassesof modelsto others.
The best method is the one that provides an equal chanceto all modelsto be generatedat

random.

Depth (m)

0 1000 2000 3000 4000

Vs (m/si

4 16 64 256 1024
Number of occurences/class

Figure B.1: Prior information carried by pa-
rameterization: LVZ (Vs prole). The black
lines are the minimum and maximum velocity
pro les admissible.

The variousmethods aretestedin terms of prior in-
formation brought by the parameterizationitself. For
doing so, 10000models are randomly generatedwith
eadt type of parameterization. At ead depth, an his-
togram is constructed courting the number of occur-
rencesin ead velocity class (100 classesfrom O to
the maximum velocity allowed by the parameteriza-
tion). All histograms are summarizedin a velocity-
depth plot with the number of occurrenceindicated by
grey scales.A rst exampleis shavn in gure B.1 for
the Vs pro le of the inversionof section4.3.1. The dis-
tribution at ead depth is not perfectly uniform which
is prone to introduce someuncortrolled prior infor-
mation if Vg is not well constrainedby the dispersion
curve. On the cortrary, for the same case,the V,
pro le has a perfect uniform distribution (not shown
here). This fact is unavoidable when making a vari-
able transformation to obtain the physical parameters
of the ground model (section4.2).
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B.1 Selection metho d

APPENDIX B. GENERATING INCREASING VELOCITY PROFILES

Among the random modelsgeneratedasin section4.3.1,the parameterizationalgorithm selects
only the oneful lling the physical condition and having an increasingpro le. With a great

number of layers, this method needsquite a lot of time asthe probability of having no LVZ
is very small. Practically, it doesnot work. Like the parameterizationin gure B.1, the prior
information provided by the parameterizationis optimum (uniform distribution).

B.2 Sorting metho d

A possibility to obtain an increasingvelocity pro le would be to generateN random velocities
and to sort them. This method presens the major drawbadk that ead random deviate is

not linked to the velocity at a particular depth. The parameter spacemay be very complex.
Moreover, there arelittle chancesto generatea model with a deepand sharp cortrast, because
it requiresthat nearly all random valuesare small.

B.3 Velocity-jump metho d
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4 16 64 256 1024
Number of occurences/class
Figure B.2: Prior information carried by

parameterization: velocity jump. The black
lines are the minimum and maximum velocity
pro les admissible.

values (0

The velocity of the rst layer is the rst parameter.
The other parametersare the velocity jumps from one
layer to the next one. This is the basicapproad that
has beenimplemernted when the number of layers is
small (section 4.2). The velocity for any layer i is
de ned by V, + }:1 dV, whereV, is the random ve-
locity of the rst layer and dV; the velocity jump at
eat interface. Vp and dVf are random variableswith
a uniform distribution in the bestcase.ThenV; is the
sum of uniform random variablesand its distribution
tends to a Gaussiandistribution when the number of
layersincreaseqcertral limit theorem).

Figure B.2 shows the histograms for a parame-
terization whpere the velocity varies between 100 and
265 m/s ( TZVpO) at the surfaceand where all dVf
are randomly chosenbetween O and 400 m/s. This
kind of parameterizationmay be acceptablefor V, be-
causethere are usually no special conditions on V,
values. On the cortrary, Vs valuesare linked to V,

0:5) and this condition is impossibleto imposewith this method. As shavn

by gure B.2, this kind of parameterizationnaturally orientates the inversiontowards a regular

increaseof the velocity with depth.
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B.4 Interp olation metho d

In the precedingmethod, it is impossibleto allow strong velocity cortrast (the maximum in the
exampleis 400 m/s) and to limit the maximum velocity (> 4000m/s in the example) of the
model. To improve the method, a minimum (Vpin ) and a maximum (Vmax ) Velocity are rst
de ned. The velocity of any layer (V;) is de ned asthe rst parameter (Vmin < Vi < Vinax)-
The velocities of the other layers are successigly calculatedto the top and to the bottom by

0 0 0
i ] (b) ] (c)

40— 40— 40—
T 80 80 80
- = =S
o o o
8120 8120 8120
160 160 160
1 (@) ] ]

200 \\\\‘\\\\‘\\\\‘\\\\‘\ 200 \\\\‘\\\\‘\\\\‘\\\\‘\ 200 \\\\‘\\\\‘\\\\‘\\\\‘\

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000

Velocity (m/s) Velocity im/si Velocity (m/s)

4 16 64 256 1024
Number of occurences/class

Figure B.3: Prior information carried by parameterization: interpolation. The black lines are the minimum
and maximum velocity pro les admissible. Starting layer is the (a) rst one, (b) the 7th, and (c) the last one.

Vi 1= Vimin + P(Vi Vmin) @andViis = Vi+ p(Vimax Vi), respectively (p is a random parameter
betweenO and 1).

Figure B.3 shaws the histogramsfor the se\eral starting layers with V,,;, = 200 m/s and
Vmax = 4000m/s. The starting layer hasa strongin uence on the prior information provided by
the parameterization. To give all modelsan equalchanceof being a solution, variousinversions
with complememary starting layers must be run.

B.5 Interp olation metho d with random start

This method tries to improve the parameterspaceexploration by changingthe index of the rst

layer. A random integer, betweenO andn 1 (if n is the number of layers), speci es the index
of the starting calculation. The computation of the velocity pro le is donein the sameway. A
new degreeof freedommust be added and the parameter spacehasa more complexshape. In
the precedingmethod, there is a one-to-onerelationship betweenthe velocity pro le and the set
of generatedrandom deviates. With this new parameter,onevelocity pro le correspndsto an
in nit y of possiblesetsof random deviates. In gure B.4, this method clearly provides a more
uniform prior distribution than the precedingapproadesbut at the cost of a supplememary



152 APPENDIX B. GENERATING INCREASING VELOCITY PROFILES

parameter.

B.6 Bissection metho d

Without adding a new parameter, the bissection

method may bring a better prior distribution than 0
the basicinterpolation method. The velocities are de- |
ned by a minimum value (rst parameter,V). The 40
other parametersare betweenO and 1. A total veloc- ]
ity variation is calculated from the secondparameter % 807:
P, V=p1 (Vmax V). The velocity ofthe rst layer §1202
and last layer are setto V and V + V, respectively. 1
The calculation of velocities starts from the layer at 160
the middle of the stack, V; = V + p; V. The stak ]
is then cut in two sub-staks limited by velccitiesV, 200} ——————

Vi and Vi, V + V. The calculation is the samein 0 1000 v lzooo( /3000 4000
. elocity (m/s
eat sub-stak until ewery layer has beena ected a ty _

16 64 256 1024

velocity. The resulting prior distribution is shavn in
Number of occurences/class

gure B.5. Comparingit with gures B.2 and B.3, a

more uniform distribution is achieved without adding Fi9ure B.4: Prior information carried by pa-
rameterization: random interpolation. The

black lines are the minimum and maximum
velocity pro les admissible.

a new parameter. Contrary to the precedingmethod,
ead basicrandom parameteris directly linked to the
velocity at a xed depth, which tendsto simplify the
parameter space.Pro les with a low velocity at depth are rarely generated. If the velocity of
the last and rst layer aresetto V, andV  V, respectively, a symmetric imageis obtained.

B.7 Diagonal metho d

The spirit of this method is to give the samechanceto modelswith a regular velocity increase
and to models with sharp cortrasts. The velocities are de ned by a minimum value (rst

parameter, V). The other parametersare between 0 and 1. A total velocity variation is
calculatedfrom the secondparameterp;, V = p1 (Vmax V) WhereVyay isthe xed maximum
velocity (4000m/s in this case). The third parameteris the intersection of the pro le with the
ascendingdiagonal of the rectanglede ned by the V and V + V of the top and the bottom

layer, respectively. 0 meansminimum velocity to be a ected to the deepest layer. 1 means
maximum velocity to be a ected to the highestlayer. The already de ned layer separatesthe
stadk into two sub-staks that can be processedn the sameway. The prior distribution for
this method is givenin gure B.6. The results are quite similar to the results of the preceding
method, exceptfor pro les with low velocity at depth wherethis method appearsto be slightly

more e cient. A symmetric distribution can alsobe generatedby inverting the velocity of the



Number of occurences/class

Figure B.5: Prior information carried by param-
eterization: bissection. The black lines are the
minimum and maximum velocity pro les admissi-

Number of occurences/class

Figure B.6: Prior information carried by param-
eterization: diagonal. The black lines are the min-

imum and maximum velocity pro les admissible.
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ble.

rst and last layer like in the above method.

B.8 Including Poisson's ratio

None of the described methods o ers a really uniform prior distribution like the one obtained
for the arbitrary pro les (section4.3.1and gure B.1). And the physical limits, like the limits
on the Poisson'sratio, are not handled. Howewer, with a xed V, prole (not random), it is
possibleto generatepseudoVs pro les between0 and 1 m/s with oneof the available methods.
In asecondstep, Vs in eat layer is scaledto [Viin ; Vimax ], the maximum valuesbeingcalculated
from the increasingand xed V, prole. The minimum value must be the samefor all layersto
avoid any LVZ whenscalingthe pseudopro le. The e ect of the scalingtransformation applied
to the diagonal method (section B.7) is shovn in gure B.7 for a xed V, prole equalto the
one of the theoretical model ( gure 4.1(a)). By comparisonthe scalingtransformation is also
appliedto the interpole method, starting from last layer (sectionB.4). If V, is alsovariable, the
Vs prior density of probability is lessuniform than in gure B.7. With the interpole method,
the maximum Vs pro le represeted by the black line hasalmost no chanceto be generatedby
the inversionalgorithm. The diagonal o ers a more uniform prior distribution with an similar
probability for all model.

B.9 Conclusions

For the parameterizationdescritedin section4.2,the model canbe constructedfrom the param-
etersin a direct way. For the methods proposedin this appendix, integrating the relationships
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Figure B.7: Prior information carried by param-
eterization: scaleddiagonal. The black lines are
the minimum and maximum velocity pro les ad-
missible.
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Figure B.8: Prior information carried by param-
eterization: scaledinterpole. The black lines are
the minimum and maximum velocity pro les ad-
missible.

betweenlayersinto a genericstructure would require the de nition at the userlevel of blocks
and sub-blocks of layers where V, and Vs are managedfor the whole block and not for eadt
particular layer. The description of sucx models would be less exible than the basic descrip-
tion layer by layer detailedin section4.2. The examplesof this sectionhave beencalculatedby
hard coding! the layer structure for ead case.No genericconstruction tool hasbeendeweloped
until now. Actually, the new conditional neighbourhood algorithm o ers the possibility to set
whatewer condition betweenany parametersin a very exible way. This why no special e ort

hasbeenput on deweloping ready to usecodesfor the methods detailed in this section.

Iparameter valuesexplicitly written in the code, compilation is necessaryto changeit
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